A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere. | LitMetric

Understanding how the sources of an atmospheric organic aerosol (OA) govern its burden is crucial for assessing its impact on the environment and adopting proper control strategies. In this study, the sources of OA over Beijing were assessed year-around based on the combination of two separation approaches for OA, one from chemical fractionation into the high-polarity fraction of water-soluble organic matter (HP-WSOM), humic-like substances (HULIS), and water-insoluble organic matter (WISOM), and the other from statistical grouping using positive matrix factorization (PMF) of high-resolution aerosol mass spectra. Among the three OA fractions, HP-WSOM has the highest O/C ratio (1.36), followed by HULIS (0.56) and WISOM (0.17). The major sources of different OA fractions were distinct: HP-WSOM was dominated by more oxidized oxygenated OA (96%); HULIS by cooking-like OA (40%), less oxidized oxygenated OA (27%), and biomass burning OA (21%); and WISOM by fossil fuel OA (77%). In addition, our results provide evidence that mass spectral-based PMF factors are associated with specific substructures in molecules. These structures are further discussed in the context of the FT-IR results. This study presents an overall relationship of OA groups monitored by chemical and statistical approaches for the first time, providing insights for future source apportionment studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c08604DOI Listing

Publication Analysis

Top Keywords

organic aerosol
8
organic matter
8
oxidized oxygenated
8
distinctive sources
4
sources govern
4
organic
4
govern organic
4
aerosol fractions
4
fractions degrees
4
degrees oxygenation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!