Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and -selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp)-H bond borylations. Heterocyclic molecules are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp)-H and C(sp)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c13415 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
An isoreticular metal-organic framework (MOF) series was constructed from nickel or cobalt nodes, phosphonate monoester, and bipyridine linkers. The cobalt-containing MOFs were found to catalyze the dehydrogenative C-H borylation of alkenes under mild conditions. This process selectively generates vinyl boronate without the formation of alkyl boronate byproducts and is insensitive to air, enabling large-scale preparation of the target products with isolated yields of over 80%.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tsinghua University, Department of Chemistry, 1 Qinghuayuan, Haidian District, 100084, Beijing, CHINA.
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Arene borylation reactions provide direct access to aryl organoboranes, including aryl boronic esters. Precious metals, namely Ir, Rh, Pt, remain the go-to for metal-catalysed borylation reactions, however, significant efforts have been expended in developing Earth-abundant metal alternatives. The iron-catalysed borylation of 2-aryl pyridine derivatives with 9-borabicyclo[3.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.
View Article and Find Full Text PDFOrg Lett
December 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
NHC boryl radical mediated halogen atom transfer (XAT) is useful in organic synthesis. Yet, most of the reaction ends only with reducing the halogen to hydrogen, that is, the C-X to C-H. This is especially dominant for electron-deficient alkyl halides, where the formed electrophilic radical reacts rapidly with NHC boranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!