[Advances of polymer-monomer production by cyanobacterial cell factory].

Sheng Wu Gong Cheng Xue Bao

School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: March 2021

Cyanobacteria is one of the promising microbial chassis in synthetic biology, which serves as a typical host for light-driven production. With the gradual depletion of fossil resources and intensification of global warming, the research on cyanobacterial cell factory using CO2 as carbon resource is ushering in a new wave. For a long time, research focus on cyanobacterial cell factory has mainly been the production of energy products, such as liquid fuels and hydrogen. One of the critical bottlenecks occurring in cyanobacterial cell factory is the poor economic performance, which is mainly caused by the inherent inefficiency of cyanobacteria. The problem is particularly prominent for these extremely cost-sensitive energy products. As an indispensable basis for modern industry, polymer monomers belong to the bulk chemicals with high added value. Therefore, increasing attention has been focused on polymer monomers which are superior in overcoming the economic barrier in commercialization of cyanobacterial cell factories. Here, we systematically review the progress on the production of polymer monomers using cyanobacteria, including the strategies for improving production, and the related technologies for the application of this important microbial cell factory. Finally, we summarize several issues in cyanobacterial synthetic biology and proposed future developing trends in this field.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.200637DOI Listing

Publication Analysis

Top Keywords

cyanobacterial cell
20
cell factory
16
polymer monomers
12
synthetic biology
8
energy products
8
cyanobacterial
6
cell
6
production
5
[advances polymer-monomer
4
polymer-monomer production
4

Similar Publications

Microcystin-LR induces lung injury in mice through the NF-κB/NLRP3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Microcystin-LR (MC-LR) a cyclic toxin produced by cyanobacterial species is known to exert detrimental effects on various organs, including lung. Several investigators demonstrated that MC-LR exerts pulmonary toxicity, but the underlying mechanisms remain unclear. This study aimed to investigate whether exposure to MC-LR-induced lung inflammation and examine the underlying mechanisms.

View Article and Find Full Text PDF

Entecavir (ETV) is an antiviral used to treat chronic infection caused by the hepatitis B virus, which affects approximately 250 million people worldwide. In order to mitigate the impacts of ETV on the environment, including potential harm to human health, this study evaluated the use of the Fenton-like reaction, which uses iron complexed with ethylenediaminetetraacetic acid (EDTA) at neutral pH, and the microbiological action of in removing ETV from the aqueous medium. Aqueous concentrations of 100 mg/L were subjected to Fenton-like degradation.

View Article and Find Full Text PDF

Glutathione S-transferases (GSTs) are evolutionarily conserved enzymes crucial for cell detoxication. They are viewed as having evolved in cyanobacteria, the ancient photosynthetic prokaryotes that colonize our planet and play a crucial role for its biosphere. Xi-class GSTs, characterized by their specific glutathionyl-hydroquinone reductase activity, have been observed in prokaryotes, fungi and plants, but have not yet been studied in cyanobacteria.

View Article and Find Full Text PDF

Cyanobacteria in winter: Seasonal dynamics of harmful algal blooms and their driving factors in boreal lakes.

Heliyon

December 2024

Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.

Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.

View Article and Find Full Text PDF

To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!