Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H O accumulation and activated the O signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H O accumulation and activates the O signaling pathway through stabilizing PsbP, thereby promoting disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15252DOI Listing

Publication Analysis

Top Keywords

plasmopara viticola
8
viticola rxlr
8
rxlr effector
8
effectors manipulate
8
manipulate host
8
signaling pathway
8
psbp
6
rxlr31154
6
viticola
5
effector targets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!