Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ilar/ilab008 | DOI Listing |
Parasite
January 2025
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia.
The fluke Clinostomum complanatum, a parasite of piscivorous birds, but also reptiles and rarely mammals, has established several foci in the western Palaearctic regions. Previous studies pointed out the complicated taxonomy of the genus, but broader population genetic analysis of C. complanatum has not yet been carried out.
View Article and Find Full Text PDFJ Morphol
January 2025
Department of Biology, California State University, Northridge, Northridge, California, USA.
A major goal of evolutionary ecology is to understand the interaction between ecological differences and the functional morphology of organisms. Studies of this type are common among flying birds but less so in penguins. Penguins (Spheniscidae) are the most derived extant underwater flying birds using their wings for swimming and beak when foraging.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.
View Article and Find Full Text PDFCurr Res Parasitol Vector Borne Dis
December 2024
Department of Biology, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, Wisconsin, 54901, USA.
Gibson, 1968 is an acuariid nematode associated with lethal cases of streptocarosis of diverse aquatic birds in North America and Europe. This study reports as an agent causing severe and fatal necrosis of the oesophagus and proventriculus of anatids, i.e.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany.
Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!