Propagation of shear stress in strongly interacting metallic Fermi liquids enhances transmission of terahertz radiation.

Sci Rep

Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland.

Published: March 2021

A highlight of Fermi-liquid phenomenology, as explored in neutral [Formula: see text]He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this "transverse zero sound" requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the "material photon" being the actual manifestation of transverse zero sound in the charged Fermi liquid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007721PMC
http://dx.doi.org/10.1038/s41598-021-86356-2DOI Listing

Publication Analysis

Top Keywords

shear stress
12
transmission terahertz
8
terahertz radiation
8
mass enhancement
8
transverse sound
8
propagation shear
4
stress interacting
4
interacting metallic
4
metallic fermi
4
fermi liquids
4

Similar Publications

Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.

View Article and Find Full Text PDF

Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics.

Microfluid Nanofluidics

July 2024

Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA.

The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries.

View Article and Find Full Text PDF

Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety.

View Article and Find Full Text PDF

Frictional motion is mediated by rapidly propagating ruptures that detach the ensemble of contacts forming the frictional interface between contacting bodies. These ruptures are similar to shear cracks. When this process takes place in natural faults, these rapid ruptures are essentially earthquakes.

View Article and Find Full Text PDF

Mast Cells and Arteriogenesis: A Systematic Review.

Cardiovasc Pathol

January 2025

Department of Anatomical Sciences, St. George's University, School of Medicine, Grenada, West Indies; Department of Pathology, St. George's University, School of Medicine, Grenada, West Indies; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:

Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!