Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers.

Int J Biol Macromol

Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.

Published: July 2021

This study focuses on the fabrication and characterization of alginate-based films functionalized by incorporating nanostructured lipid carriers (NLCs). The effect of different NLC/alginate mass ratios (R = 0.05, 0.1, 0.2, and 0.35) on the physical, morphological, mechanical, and barrier properties of the calcium-alginate films was evaluated. The addition of the NLCs significantly improved the UV-absorbing properties, without greatly altering their transparent appearance. As the NLC concentration increased, the tensile strength, elastic modulus, and swelling ratio of the films decreased, while their thermal stability, water vapor permeability, and contact angle increased. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the films revealed that NLC incorporation led to a more porous internal structure and a rougher surface. Fourier Transform Infrared (FTIR) analysis indicated that there were no new interactions between the calcium-alginate and NLC constituents within the films. Overall, this study shows that NLCs can be successfully incorporated into calcium-alginate films and used to modulate their physicochemical properties. In future, it will be useful to examine the potential of these films to incorporate hydrophobic bioactives such as drugs, nutraceuticals, antimicrobials, antioxidants, and pigments for specific pharmaceutical or food applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.03.159DOI Listing

Publication Analysis

Top Keywords

fabrication characterization
8
characterization alginate-based
8
films
8
alginate-based films
8
films functionalized
8
nanostructured lipid
8
lipid carriers
8
calcium-alginate films
8
functionalized nanostructured
4
carriers study
4

Similar Publications

Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.

View Article and Find Full Text PDF

Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste.

Carbohydr Res

January 2025

Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:

This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Bare silicon dimers on hydrogen-terminated Si(100) have two dangling bonds. These are atomically localized regions of high state density near to and within the bulk silicon band gap. We studied bare silicon dimers as monomeric units.

View Article and Find Full Text PDF

Selective Undercut of Undoped Optical Membranes for Spin-Active Color Centers in 4H- Silicon Carbide.

ACS Nano

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!