Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Establishing a facile and versatile strategy to confer coronary stent with improved interfacial biological activity is crucial for novel cardiovascular implants. Developing a coating with NO release ability catalyzed by metal ions, such as copper, will be highly advantageous for the functionalized surface modification of metal stents. However, most available strategies involve drawbacks of low efficiency, complex processes, and toxic chemicals. Therefore, in this study, we report a green and facile electrobiofabrication method to construct the bioactive hydrogel coating by combining chitosan, catechol groups and copper ions on coronary stent and titanium surfaces. Experimental results demonstrated that the chitosan hydrogel coating can be precisely controlled synthesis via electrochemical deposition and serves as a versatile platform for copper ions immobilization. Additionally, mussel-inspired catechol groups could be chemically grafted on chitosan chains to further enhance the film mechanical properties and binding abilities of copper ions. Moreover, in vitro cell biocompatibility and catalyzed NO-generation activity have also been accessed and which suggesting great possibilities for biomedical applications. Therefore, by coupling the electrobiofabrication approach and multi-functionalities of the hybrid film, this report would advance the development of biomimetic hydrogel coating for vascular engineering (e.g., coronary stent) and other biomedical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.03.158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!