A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A review of low-dose arsenic risks and human cancers. | LitMetric

A review of low-dose arsenic risks and human cancers.

Toxicology

Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University School of Medicine, Washington, DC, 20007, USA. Electronic address:

Published: May 2021

The linear no-threshold (LNT) model has historically been the default assumption in assessing carcinogenic risk from arsenic ingestion based on epidemiological studies. This contrasts with the threshold model used in assessing carcinogenic risk from arsenic ingestion derived from toxicological investigations of experimental animals. We present here a review of our epidemiological work that has examined models that may better explain the human cancer risk from the ingestion of arsenic, particularly from low level exposures, than does the LNT model. While previous epidemiology studies have demonstrated increased risks of bladder, lung, and skin cancers at arsenic exposures of 200 ug/L or greater, we seek here to examine the dose-response patterns at lower exposure levels. These include ecological, case/control, and cohort designs. Methodologic issues include choice of continuous or stratified analysis of exposure data, search for sources of non-conformity or variability, and distinctions in water sources and geography. Multiple studies have yielded useful data-based models, including threshold models, hockey-stick models, and "J-shaped" linear-quadratic models. These models have found that increased cancer risk may only begin at specific arsenic exposure levels greater than zero. These results provide guidance in seeking toxicological explanations and public health reference levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2021.152768DOI Listing

Publication Analysis

Top Keywords

lnt model
8
assessing carcinogenic
8
carcinogenic risk
8
risk arsenic
8
arsenic ingestion
8
cancer risk
8
exposure levels
8
arsenic
6
models
6
review low-dose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!