Steady and pulsatile aortic stenotic flows through stenosis tubes were experimentally and numerically investigated. The objective was the understanding of the fluid dynamics in arterial geometries most relevant in the context of atherosclerosis. Axisymmetric phantoms corresponding to significant artery stenosis of 50% in diameter and severe aortic stenosis of 75% were respectively machined from silicon. A water flow circuit was established, a steady flow was provided by gravity and a pulsed flow by a pulsatile pump. At inlet Reynolds numbers in the range of 85 to 1125, flows at the stenosis region were investigated using two-component Particle Image Velocimetry (PIV). For the unsteady flow, three different heartbeats (60, 69 and 90 beats per minute) were considered. The k-ω shear-stress-transport first-order turbulence model in Computational Fluid Dynamics (CFD) commercial software was adopted for simulations. Experimental measurements of the velocity fields show good agreements with CFD for both steady and pulsed flows. Recirculation regions were found near the stenosis in both cases. Reverse flow through the stenosis was also observed in pulsatile flow during the end diastolic phase of the cycle. CFD simulations allowed us to accurately assess wall shear stress in the stenotic region where the optical measurements are very noisy. High values of wall shear stress (with high variations both in space and time), are observed, which are indicators of possible future aortic wall damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2021.02.006 | DOI Listing |
This Letter reports what we believe to be a novel schlieren approach with adaptive temporal resolution. The fundamental concept of this approach is to fuse an event-based camera and a low-speed frame-based camera to generate high-frame-rate videos by leveraging the strengths of both. Using a novel experimental setup, events and frames are accurately aligned in both space and time.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China. Electronic address:
Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.
View Article and Find Full Text PDFPhotoacoustics
August 2024
Department of Physics, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
We present a technique called photoacoustic vector-flow (PAVF) to quantify the speed and direction of flowing optical absorbers at each pixel from acoustic-resolution PA images. By varying the receiving angle at each pixel in post-processing, we obtain multiple estimates of the phase difference between consecutive frames. These are used to solve the overdetermined photoacoustic Doppler equation with a least-squares approach to estimate a velocity vector at each pixel.
View Article and Find Full Text PDFJ Vasc Surg
December 2024
School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Nephrology, Prince of Wales Hospital, Sydney, New South Wales, Australia.
Am J Physiol Cell Physiol
January 2025
Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, United States.
The TCA cycle serves as a central hub to balance catabolic and anabolic needs of the cell, where carbon moieties can either contribute to oxidative metabolism or support biosynthetic reactions. This differential TCA cycle engagement for glucose-derived carbon has been extensively studied in cultured cells, but the fate of fatty acid (FA)-derived carbons is poorly understood. To fill the knowledge gap, we have developed a strategy to culture cells with long-chain FAs without altering cell viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!