Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008571 | PMC |
http://dx.doi.org/10.1186/s13287-021-02283-z | DOI Listing |
J Transl Med
January 2025
Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.
Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
Background: Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited.
Methods: This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS).
Curr Oncol Rep
January 2025
Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa City, Chiba, Japan.
Purpose Of Review: Human epidermal growth factor receptor 2 (HER2) is a critical target in advanced gastric cancer (AGC). This review highlights the current treatment landscape, lessons learned from past clinical trials, and prospects for future treatment strategies for HER2-positive AGC.
Recent Findings: Trastuzumab had been the standard treatment for HER2-positive AGC for a decade, and subsequently, trastuzumab deruxtecan, an antibody-drug conjugate (ADC), emerged with an impressive response.
Int Immunopharmacol
January 2025
School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui 230032, China. Electronic address:
Chimeric antigen receptor T (CAR-T) cells represent a promising approach for cancer immunotherapy, yet their efficacy is hindered by immunosuppressive signals in the tumor microenvironment. Casitas B-cell lymphoma protein b (Cbl-b) is a key negative regulator of T cell function. This study investigated whether inhibiting Cbl-b enhances the antitumor activity of human CAR-T cells.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Chimeric antigen receptor (CAR) T cell therapy for solid tumors faces significant challenges, including inadequate infiltration, limited proliferation, diminished effector function of CAR T cells, and an immunosuppressive tumor microenvironment (TME). In this study, we utilized The Cancer Genome Atlas database to identify key chemokines (CCL4, CCL5, and CCR5) associated with T cell infiltration across various solid tumor types. The CCL4/CCL5-CCR5 axis emerged as significantly correlated with the presence of T cells within tumors, and enhancing the expression of CCR5 in CAR T cells bolstered their migratory capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!