The Roots of Genetic Coding in Aminoacyl-tRNA Synthetase Duality.

Annu Rev Biochem

Department of Physics, University of Auckland, Auckland 1142, New Zealand.

Published: June 2021

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-biochem-071620-021218DOI Listing

Publication Analysis

Top Keywords

genetic coding
8
roots genetic
4
coding aminoacyl-trna
4
aminoacyl-trna synthetase
4
synthetase duality
4
duality codon-dependent
4
codon-dependent translation
4
translation underlies
4
underlies genetics
4
genetics phylogenetic
4

Similar Publications

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

MircoRNAs predict and modulate responses to chemotherapy in leukemic patients.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt.

Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.

View Article and Find Full Text PDF

Diagnosing Late-Onset Tay-Sachs Through Next Generation Sequencing and Functional Enzyme Testing: From Genes to Enzymes.

Neurol Genet

December 2024

From the School of Medicine (A.R.T., J.R.), The University of Queensland; Department of Neurology (W.R., P.A.M., R.D.H., L.V.), Royal Brisbane & Women's Hospital; The University of Queensland (P.A.M., R.D.H., L.V.), UQ Centre for Clinical Research; and Genetic Health Queensland (J.R.), Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.

Tay-Sachs disease is a neurodegenerative disorder characterized by progressive neurologic impairment due to pathogenic variants in the gene that codes for the alpha subunit of β-hexosaminidase. We report 2 cases of adult-onset progressive weakness, ataxia, and neuropsychiatric symptoms in a 30-year-old man and 37-year-old woman. Both patients had compound heterozygosity in the gene with 4 distinct variants.

View Article and Find Full Text PDF

Objectives: To describe the population that meets the criteria for major depressive disorder (MDD) in British Columbia (BC), compare patterns of healthcare utilisation between those with MDD who are and are not prescribed pharmacotherapy, and assess these relationships in models that control for potential confounding variables.

Design: We used a population cross-sectional study design among a cohort of individuals living with MDD and examined the relationship between pharmacotherapy and healthcare utilisation between 2019 and 2020 using linked billing and administrative data.

Setting: This study identified individuals with MDD using a validated case definition of International Classification of Diseases (ICD) codes in BC, Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!