Enhancing the stability of polymer nanostructures via ultrathin oxide coatings for nano-optical device applications.

Nanotechnology

National Technology Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 People's Republic of China.

Published: April 2021

AI Article Synopsis

  • Polymer nanostructures are important in nanotechnology but are often unstable under harsh conditions, which limits their use.
  • A new method has been developed to enhance their stability by applying a thin oxide coating through atomic-layer deposition.
  • This coating significantly improves the thermal and chemical resistance of the polymer structures, demonstrated through stable PMMA nanostructures, suggesting broader applications in optical devices needing high durability.

Article Abstract

Polymer nanostructures have drawn tremendous attention due to their wide applications in nanotechnology. However, the morphology of the polymer nanostructures is fragile under harsh conditions such as high-power irradiation and organic-solution environments during the fabrication or the measurement processes, significantly limiting their potential applications. In this work, we propose and demonstrate a simple approach to improve the stability of polymer nanostructures by coating a conformal ultrathin oxide film via atomic-layer deposition. Due to the refractory and dense coating of the oxide layer, the stability of polymer structures is enhanced by the prohibition of deformation occurrences from thermally induced reflow and organic solution. As a proof of concept, poly(methyl methacrylate) (PMMA) nanostructures coated with a sub-10-nm TiOlayer are demonstrated, and the structures exhibit high temperature stability at 180 °C and good resistance to soluble damage from organic solutions. Subsequently, the mechanism of the improved thermal stability is analyzed via mechanical simulations. Such an effective approach is proposed to significantly broaden the application of polymer nanostructures as functional elements for optical structures/devices that require excellent thermal and chemical stability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abf300DOI Listing

Publication Analysis

Top Keywords

polymer nanostructures
20
stability polymer
12
ultrathin oxide
8
polymer
6
nanostructures
6
stability
5
enhancing stability
4
nanostructures ultrathin
4
oxide coatings
4
coatings nano-optical
4

Similar Publications

Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions.

ACS Nano

January 2025

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.

Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.

View Article and Find Full Text PDF

Pharmaceutical nanosuspensions, also called nanocrystals, are heterogeneous mainly aqueous dispersions of insoluble drug particles stabilised by surfactants and/or polymers. Nanosuspensions as liquid formulations suffer from instability. Solidification of nanosuspensions to solid dosage forms is a way to combine the advantages of nanocrystals with the advantages of the solid state.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

The nanoengager strategy, which enhances receptor signaling responsiveness through a multivalent ligand binding mode, offers a promising approach for improving immune cell redirecting therapy. Increasing nanomaterial platforms have been developed for constructing more flexible and multifunctional nanoengagers, but the different mediating mechanisms from their multivalent nanostructures, compared to original monomolecule engagers, have rarely been discussed. Here, we constructed dual-specificity T cell nanoengagers (TNEs) targeting CD3 and PDL1 receptors based on a polyethylene glycol--polylactic acid (PEG--PLA)-assembled nanoparticle and specifically studied the impact of surface antibody valences on their functional mechanisms, thereby enhancing the structural advantages of TNEs against solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!