Introduction: Passive mechanical properties of the paraspinal muscles are important to the biomechanical functioning of the spine. In most computational models, the same biomechanical properties are assumed for each paraspinal muscle group, while cross-sectional area or fatty infiltration in these muscles have been reported to differ between the vertebral levels. Two important properties for musculoskeletal modeling are the slack sarcomere length and the tangent modulus. This study aimed to investigate the effect of vertebral level on these biomechanical properties of paraspinal muscles in a rat model.
Methods: The left paraspinal muscles of 13 Sprague-Dawley rats were exposed under anesthesia. Six muscle biopsies were collected from each rat: three from multifidus (one per each of the L1, L3, and L5 levels) and similarly three from longissimus. Each biopsy was cut into two halves. From one half, two to three single muscle fibers and two to six muscle fiber bundles (14 ± 7 fibers surrounded in their connective tissue) were extracted and mechanically tested in a passive state. From the resulting stress-strain data, tangent modulus was calculated as the slope of the tangent at 30% strain and slack sarcomere length (beyond which passive force starts to develop) was recorded. The other half of each biopsy, which represented the muscle at the fascicle level, was snap frozen, sectioned, stained for Collagen I and its area fraction was measured. To evaluate the effect of spinal level on these biomechanical properties of multifidus and longissimus, one-way repeated measures ANOVA (p < 0.05) was performed for tangent modulus and slack sarcomere length, while for collagen I content linear mixed-models analysis was adopted.
Results: In total, 192 fibers and 262 fiber bundles were mechanically tested. For both muscle groups, no significant difference in tangent modulus of the single fibers was detected between the three spinal levels (p = 0.9 for multifidus and p = 0.08 for longissimus). Similarly, the tangent modulus values for the fiber bundles were not significantly different between the three spinal levels (p = 0.13 for multifidus and p = 0.49 for longissimus). In both muscle groups, the slack sarcomere lengths were not different among the spinal levels except for multifidus fibers (p = 0.02). Collagen I area fraction in muscle fascicles averaged 6.8% for multifidus and 5.3% for longissimus and was not different between the spinal levels.
Discussion: The results of this study highlighted that the tangent modulus, slack sarcomere length, and collagen I content of the lumbar paraspinal muscles are independent of spinal level. This finding provides the basis for the assumption of similar mechanical properties along a paraspinal muscle group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104446 | DOI Listing |
Materials (Basel)
January 2025
CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
Epoxy resins are extensively employed as adhesives and matrices in fibre-reinforced composites. As polymers, they possess a viscoelastic nature and are prone to creep and stress relaxation even at room temperature. This phenomenon is also responsible for time-dependent failure or creep fracture due to cumulative strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės Str. 25, 10105 Vilnius, Lithuania.
This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load-displacement and stress-strain dependence diagrams were compared from the obtained results.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain.
Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.
View Article and Find Full Text PDFBiomedicines
December 2024
Jean Lamour Institute, Department of Micro and Nanomechanics for Life, University of Lorraine, UMR 7198, 54011 Nancy, France.
Oral implantology faces a multitude of technical challenges in light of current clinical experience, underlining the need for innovation in implantable medical devices in both mechanical and biological terms. This study explores the influence of the thickness factor of calcium-doped zirconia (Ca-SZ) coatings deposited by PVD on their intrinsic mechanical properties and the determinism of the latter on adhesion to the TA6V alloy substrate after mechanical loading for applications in dental implantology. Three separate thicknesses of 250 nm, 450 nm and 850 nm were evaluated in terms of mechanical strength, modulus of elasticity and adhesion to the substrate, in accordance with ISO 20502:2005.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Higher Institute of Sport, and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia.
: Burnout is a major problem for physical and mental health of medical residents. The key for maintaining well-being and quality of care of residents is the assessing tool. The study evaluated the psychometric properties of the Arabic version of the Maslach Burnout Inventory Human Services Survey (MBI-HSS) among Tunisian medical residents by assessing its factor structure, construct validity, reliability, and gender invariance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!