Over the course of history, mining and metallurgical activities have influenced the socioeconomic development of human populations. However, these past and current activities can also lead to substantial environmental contamination by various metals. Here, we used an interdisciplinary approach (incorporating archaeology, mineralogy, environmental chemistry and ecotoxicology) to investigate the origin, fate and potential ecotoxicity of anomalous manganese (Mn) concentrations detected in the ancient mining district of Berthelange (medieval period, eastern France). Mineralogical investigations of slag samples showed that smelting temperature conditions in medieval bloomeries led to the production of slags mainly composed of Fe- and Mn-rich olivine, i.e., fayalites. Further mineralogical analyses of bulk soil and clay fractions allowed us to identify the presence of serpentine. This evidence of olivine weathering can account for the release of Mn from slags into the soil. In addition, chemical analyses of total and available (exchangeable and reducible) Mn concentrations in soil samples clearly showed the contribution of slags deposited 1000 years ago to soil contamination. A complementary ecotoxicity bioassay performed on soils from a slag heap using the land snail Cantareus aspersus confirmed that a significant fraction of the Mn detected in soils remains available for partitioning with the soil solution and transfer to soil organisms. Although no growth inhibition of snails was observed after 28 days of exposure, the animals accumulated quite elevated Mn concentrations in their tissues. Our study emphasizes the environmental availability and bioavailability of Mn from ancient metallurgical wastes to soil-dwelling invertebrates, i.e., snails, even one millennium after their deposition. Hence, as for more recent industrial sites, past mining ecosystems must be a cause of concern for the scientific community and public authorities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130337DOI Listing

Publication Analysis

Top Keywords

origin fate
8
metallurgical wastes
8
soil
6
fate ecotoxicity
4
ecotoxicity manganese
4
manganese legacy
4
legacy metallurgical
4
wastes course
4
course history
4
history mining
4

Similar Publications

On the Tracks to "Smart" Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy.

Despite their enormous impact in modern heterogeneous catalysis, single-atom catalysts (SACs) continue to puzzle the catalysis community, which often struggles to draw correct conclusions in SAC-catalyzed experiments. In many cases, the reasons for such an uncertainty originate from the lack of knowledge of the exact single-atom evolution under operative conditions and the fundamental factors controlling the fate of the single atom in relation to the catalytic mechanism. This has led to confusion also about correct definition and terminology, where the coined term reflects the difficulty in defining the true active species as well as in obtaining long-range ordered homogeneous supports [Chi, S.

View Article and Find Full Text PDF

Several groundwater quality investigations have been conducted in coastal regions that are commonly exposed to multiple anthropogenic stressors. Nonetheless, such studies remain challenging because they require focused-diagnostic approaches for a comprehensive understanding of groundwater contamination. Therefore, this study integrates a multi-tracer approach to acquire comprehensive information allowing for an improved understanding of the origins of groundwater contamination, the relative contribution of contaminants, and their biogeochemical cycling within a coastal groundwater system.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF

StarTrack: Mapping Cellular Fates with Inheritable Color Codes.

Methods Mol Biol

January 2025

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!