Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiple sclerosis (MS) is a chronic inflammatory disease leading to demyelination and axonal loss in the central nervous system that causes focal lesions of gray and white matter. However, the functional impairments of brain networks in this disease are still unspecified and need to be clearer. In the present study, we investigate the resting-state brain network impairments for MS participants in comparison to a normal group using electroencephalography (EEG) and graph theoretical analysis with a source localization method. Thirty-four age- and gender-matched participants from each MS group and normal group participated in this study. We recorded 5 min of EEG in the resting-state eyes open condition for each participant. One min (15 equal 4-sec artifact-free segments) of the EEG signals were selected for each participant, and the Low-Resolution Electromagnetic Tomography software was employed to calculate the functional connectivity among whole cortical regions in six frequency bands (delta, theta, alpha, beta1, beta2, and beta3). Graph theoretical analysis was used to calculate the clustering coefficient (), betweenness centrality (), shortest path length (), and small-world propensity () for weighted connectivity matrices. Nonparametric permutation tests were utilized to compare these measures between groups. Significant differences between the MS group and the normal group in the average of and were found in the alpha band. The significant differences in the were spread over all lobes. These results suggest that the resting-state brain network for the MS group is disrupted in local and global scales, and EEG has the capability of revealing these impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/brain.2020.0857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!