The subthreshold swing is the critical parameter determining the operation of a transistor in low-power applications such as switches. It determines the fraction of dissipation due to the gate capacitance used for turning the device on and off, and in a conventional transistor it is limited by Boltzmann's tyranny to ln(10)/. Here, we demonstrate that the subthreshold swing of a topological transistor in which conduction is enabled by a topological phase transition via electric field switching, can be sizably reduced in a noninteracting system by modulating the Rashba spin-orbit interaction. By developing a theoretical framework for quantum spin Hall materials with honeycomb lattices, we show that the Rashba interaction can reduce the subthreshold swing by more than 25% compared to Boltzmann's limit in currently available materials but without any fundamental lower bound, a discovery that can guide future material design and steer the engineering of topological quantum devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c00378DOI Listing

Publication Analysis

Top Keywords

subthreshold swing
12
boltzmann's tyranny
8
topological quantum
8
overcoming boltzmann's
4
transistor
4
tyranny transistor
4
topological
4
transistor topological
4
quantum field
4
field subthreshold
4

Similar Publications

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF

As electronics advance toward higher performance and adaptability in extreme environments, traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) face challenges due to physical constraints such as Boltzmann's law and short-channel effects. Nanoscale air channel transistors (NACTs) present a promising alternative, leveraging their vacuum-like channel and Fowler-Nordheim tunneling characteristics. In this study, a novel circular gate NACT (CG-NACT) is purposed, fabricated on a 4-inch silicon-based wafer using a CMOS-compatible process.

View Article and Find Full Text PDF

Machine Learning Strategy for Optimizing Multiple Electrical Characteristics in Dual-Layer Oxide Thin Film Transistors.

ACS Appl Mater Interfaces

December 2024

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

A machine learning (ML) strategy is suggested to optimize dual-layer oxide thin film transistor (TFTs) performance. In this study, Bayesian optimization (BO), an algorithm recognized for its efficiency in optimizing material design, is applied to guide the design of a channel layer composed of IZO and IGZO. The sputtering fabrication process, which has attracted attention as an oxide semiconductor channel layer deposition method, is fine-tuned using ML to enhance multiple electrical characteristics of transistors: field-effect mobility, threshold voltage, and subthreshold swing.

View Article and Find Full Text PDF

Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.

View Article and Find Full Text PDF

Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.

Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!