Tryptophanyl-tRNA synthetase catalyzed formation of Trp-tRNA(Trp) has been studied by mixing tRNA(Trp) with a preformed bis(tryptophanyl adenylate)-enzyme complex in the 0-60-ms time range, on a quenched-flow apparatus. Analyzing the data gives an association rate constant ka = (1.22 +/- 0.47) X 10(8) M-1 S-1, a dissociation rate constant kd = 143 +/- 73 S-1, and a dissociation constant Kd = 1.34 +/- 0.80 microM for tRNA(Trp). The maximum rate constant of tryptophan transfer to tRNA(Trp) is kt = 33 +/- 3 S-1. When starting the aminoacylation reaction with a mono(tryptophanyl adenylate)-enzyme complex, one obtains different kinetic profiles than when using a bis(tryptophanyl adenylate)-enzyme complex. Over a 0-400-ms time range, the monoadenylate-enzyme complex yields an apparent first-order reaction, while the bis-adenylate-enzyme complex yields a biphasic aminoacylation of tRNA(Trp). Analysis of Trp-tRNA(Trp) formation from both complexes according to simple reaction schemes shows that the dissociation of tRNA(Trp) from an enzyme subunit carrying no adenylate is 6.9-fold slower than from an enzyme subunit carrying an adenylate. The apparent rate constant of dissociation of nascent tryptophanyl-tRNA(Trp) is 4.9 S-1 in the absence of free tryptophan, which is much slower than its rate of formation (33 S-1).(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00406a065DOI Listing

Publication Analysis

Top Keywords

rate constant
16
adenylate-enzyme complex
12
tryptophanyl-trna synthetase
8
bistryptophanyl adenylate-enzyme
8
time range
8
s-1 dissociation
8
+/- s-1
8
complex yields
8
enzyme subunit
8
subunit carrying
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!