Background: Implantable medical devices and hardware are prolific in medicine, but hardware associated infections remain a major issue.
Objective: To develop and evaluate a novel, biologic antimicrobial coating for medical implants.
Methods: Electrochemically compacted collagen sheets with and without crosslinked heparin were synthesized per a protocol developed by our group. Sheets were incubated in antibiotic solution (gentamicin or moxifloxacin) overnight, and in vitro activity was assessed with five-day diffusion assays against Pseudomonas aeruginosa. Antibiotic release over time from gentamicin-infused sheets was determined using in vitro elution and high performance liquid chromatography (HPLC).
Results: Collagen-heparin-antibiotic sheets demonstrated larger growth inhibition zones against P. aeruginosa compared to collagen-antibiotic alone sheets. This activity persisted for five days and was not impacted by rinsing sheets prior to evaluation. Rinsed collagen-antibiotic sheets did not produce any inhibition zones. Elution of gentamicin from collagen-heparin-gentamicin sheets was gradual and remained above the minimal inhibitory concentration for gentamicin-sensitive organisms for 29 days. Conversely, collagen-gentamicin sheets eluted their antibiotic load within 24 hours. Overall, heparin-associated sheets demonstrated larger inhibition zones against P. aeruginosa and prolonged elution profile via HPLC.
Conclusion: We developed a novel, local antibiotic delivery system that could be used to coat medical implants/hardware in the future and reduce post-operative infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-201133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!