Latent blood fingerprints (LBFPs) can provide critical information of foul play and help identify the suspects at violent crime scenes. The current methods for LBFP visualization are still not satisfactory because of the low sensitivity or complicated protocol. This study demonstrates a simple and effective LBFP visualization strategy by integrating a new amphiphilic fluorescent amino-functionalized conjugated polymer with the cotton-pad developing protocol. LBFPs on various substrates are visualized by simply covering them with the polymer solution-soaked cotton pads. The images display clear fingerprint patterns, ridge details, and sweat pores, even on very challenging substrates such as painted wood and multicolored can. The gray value analysis confirms semiquantitatively the enhancement of the contrast between ridges and furrows. Even LBFPs with various contaminations or aged for more than 600 days are effectively developed and visualized. The developed fingerprint images show superior stability over long storage time and against solvent washing. Moreover, the polymer causes no degradation of DNAs in the blood, suggesting the possibility of further DNA profiling and identification after development. The mechanistic investigation suggests that the formation of positive or inverted images can be attributed to the synergistic effects from the affinity between polymer and blood, and the affinity betwen polymer and substrate, as well as the slight quenching of polymer fluorescence by blood. Furthermore, the covalent bonding between the protonated primary amino group and proteins in blood endows the stability of the developed fingerprints. The result rationalizes the molecular design of the fluorescent polymer and sheds new light on the future strategies to effective LBFP visualization in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c00710 | DOI Listing |
Front Cardiovasc Med
January 2022
Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Left bundle branch pacing (LBBP) is a rapidly growing conduction system pacing technique. However, little is known regarding the electrophysiological characteristics of different types of LBBP. We aimed to evaluate the electrophysiological characteristics and anatomic lead location with pacing different branches of the left bundle branch.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
Latent blood fingerprints (LBFPs) can provide critical information of foul play and help identify the suspects at violent crime scenes. The current methods for LBFP visualization are still not satisfactory because of the low sensitivity or complicated protocol. This study demonstrates a simple and effective LBFP visualization strategy by integrating a new amphiphilic fluorescent amino-functionalized conjugated polymer with the cotton-pad developing protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!