Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rare availability of suitable single-crystal X-ray diffraction (SCXRD) structural data allows for the direct interpretation of the response of a framework to gas sorption and may lead to the development of improved functional porous materials. We report an in situ SCXRD structural investigation of a flexible MOF subjected to methane, ethane, propane, and butane gas pressures. Supporting theoretical investigations indicate weak host-guest interactions for the crystallographically modelled gaseous guests and, in addition, reveal that a turnstile mechanism facilitates the transport of alkanes through the seemingly nonporous system. Inflections present in the adsorption isotherms are furthermore rationalized as due to gate-opening, but without the expected creation of new accessible space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202102327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!