Intraoperative optimization of seed implantation plan in breast brachytherapy.

Int J Comput Assist Radiol Surg

Department of Electrical and Computer Engineering, University of Alberta, 9211, 116 St NW, Edmonton, AB, T6G 1H9, Canada.

Published: June 2021

Purpose: Low-dose-rate permanent-seed (LDR-PS) brachytherapy has shown a great potential for treating breast cancer. An implantation scheme indicating the template pose and needle trajectories is determined before the operation. However, when performing the pre-planned scheme intraoperatively, a change of the patient's posture will cause seed placements away from the desired locations. Hence, the implantation scheme should update based on the current patient's posture.

Methods: A numerical method of optimizing the implantation scheme for the LDR-PS breast brachytherapy is presented here. The proposed algorithm determines the fewest needle trajectories and template poses for delivering the seeds to the intraoperative desired locations. The clinical demand, such as the minimum distance between the chest wall and the needle, is considered in the optimization process.

Results: The method was simulated for a given LDR-PS brachytherapy procedure to evaluate the optimal scheme as the number of the template poses changing. The optimization parameters of the needles' number and the implantation errors are used to adjust the algorithm outcome. The results show that the implantation schemes obtained by our method have a satisfactory accuracy in the cases of 2 or 3 template poses. The computation time is about 76s to 150s according to the number of the template poses from 1 to 3.

Conclusion: The proposed method can find the optimal implantation scheme corresponding to the current desired seed locations immediately once there is a change of patient's posture. This work can be applied to the robot-assisted LDR-PS breast brachytherapy for improving the operation accuracy and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-021-02350-zDOI Listing

Publication Analysis

Top Keywords

implantation scheme
16
template poses
16
breast brachytherapy
12
ldr-ps brachytherapy
8
needle trajectories
8
change patient's
8
patient's posture
8
desired locations
8
ldr-ps breast
8
number template
8

Similar Publications

Objectives: To assess the effect of occlusion and implant number/position on stress distribution in Kennedy Class II implant-assisted removable partial denture (IARPD).

Materials And Methods: IARPDs were designed in six models: with one implant (bone level with a platform of 4 mm and length of 10 mm) at the site of (I) canine, (II) between first and second premolars, (III) first molar, (IV) second molar, or two implants at the sites of (V) canine-first molar, and (VI) canine-second molar. A conventional RPD served as control.

View Article and Find Full Text PDF

Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.

IEEE J Solid-State Circuits

November 2024

Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.

View Article and Find Full Text PDF

Quantifying the influence of combined lung and kidney support using a cardiovascular model and sensitivity analysis-informed parameter identification.

Comput Biol Med

January 2025

Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.

The combination of extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) pose complex hemodynamic challenges in intensive care. In this study, a comprehensive lumped parameter model (LPM) is developed to simulate the cardiovascular system, incorporating ECMO and CRRT circuit dynamics. A parameter identification framework based on global sensitivity analysis (GSA) and multi-start gradient-based optimization was developed and tested on 30 clinical data points from eight veno-arterial ECMO patients.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

The technical development of implant-supported fixed dental prostheses (iFDP) initially concentrated on the computer-aided manufacturing of prosthetic restorations (CAM). Advances in information technologies have shifted the focus for optimizing digital workflows to AI-based processes for design (CAD). This pre-clinical pilot trial investigated the feasibility of the automatic design of three-unit iFDPs using CAD software (Dental Manger 2021, 3Shape; DentalCAD 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!