Background: Arsenite oxidase (EC 1.20.2.1) is a metalloenzyme that catalyzes the oxidation of arsenite into lesser toxic arsenate. In this study, 78 amino acid sequences of arsenite oxidase from unculturable bacteria available in metagenomic data of arsenic-contaminated soil have been characterized by using standard bioinformatics tools to investigate its phylogenetic relationships, three-dimensional structure and functional parameters.

Results: The phylogenetic relationship of all arsenite oxidase from unculturable microorganisms was revealed their closeness to bacterial order Rhizobiales. The higher aliphatic content showed that these enzymes are thermostable and could be used for in situ bioremediation. A representative protein from each phylogenetic cluster was analysed for secondary structure arrangements which indicated the presence of α-helices (~63%), β-sheets (57-60%) and turns (13-15%). The validated 3D models suggested that these proteins are hetero-dimeric with two chains whereas alpha chain is the main catalytic subunit which binds with arsenic oxides. Three representative protein models were deposited in Protein Model Database. The query enzymes were predicted with two conserved motifs, one is Rieske 3Fe-4S and the other is molybdopterin protein.

Conclusions: Computational analysis of protein interactome revealed the protein partners might be involved in the whole process of arsenic detoxification by Rhizobiales. The overall report is unique to the best of our knowledge, and the importance of this study is to understand the theoretical aspects of the structure and functions of arsenite oxidase in unculturable bacteria residing in arsenic-contaminated sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006529PMC
http://dx.doi.org/10.1186/s43141-021-00146-xDOI Listing

Publication Analysis

Top Keywords

arsenite oxidase
20
oxidase unculturable
16
unculturable bacteria
8
representative protein
8
arsenite
6
oxidase
5
protein
5
silico analysis
4
analysis phylogeny
4
structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!