Background: Awake brain mapping paradigms are variable, particularly in SMA, and not personalised to each patient. In addition, subpial resections do not offer full protection to vascular injury, as the pia can be easily violated.

Methods: Mapping paradigms developed by a multidisciplinary brain mapping team. During resection, a combined subpial/interhemispheric approach allowed early identification and arterial skeletonization. Precise anatomo-surgical dissection of the affected cingulum and corpus callosum was achieved.

Conclusions: In SMA-cingulum-CC tumours, a combined subpial/interhemispheric approach reduces risk of vascular injury allowing precise anatomo-surgical dissections. Knowledge of cognitive functions of affected parcels is likely to offer best outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053665PMC
http://dx.doi.org/10.1007/s00701-021-04774-7DOI Listing

Publication Analysis

Top Keywords

brain mapping
8
mapping paradigms
8
vascular injury
8
combined subpial/interhemispheric
8
subpial/interhemispheric approach
8
precise anatomo-surgical
8
mapping
4
mapping anatomo-surgical
4
anatomo-surgical techniques
4
techniques sma-cingulum-corpus
4

Similar Publications

Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.

Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.

View Article and Find Full Text PDF

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry.

Proc Natl Acad Sci U S A

January 2025

Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.

A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR).

View Article and Find Full Text PDF

Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.

Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.

View Article and Find Full Text PDF

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Korea University, Sejong, Sejong, Korea, Republic of (South).

Background: Amyloid-β accumulation is a pivotal factor in Alzheimer's disease (AD) progression. As treatment for AD has not been successful yet, the most effective approach lies in early diagnosis and the subsequent delay of disease progression. Hence, this study introduces a deep learning model to predict amyloid-β accumulation in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!