Delineating the genetic background and the underlying pathophysiology of rare skeletal dysplasias enables a broader understanding of these disorders as well as novel perspectives regarding differential diagnosis and targeted development of therapeutic approaches. Hypophosphatasia (HPP) due to genetically determined Alkaline Phosphatase deficiency exemplifies this development. While an enzyme replacement therapy could be established for severe HPP with the prevailing bone manifestation, the clinical impact of not immediately bone-related manifestations just being successively understood. Correspondingly, the elucidation of the pathophysiology underlying renal phosphate wasting expanded our knowledge regarding phosphate metabolism and bone health and facilitated the development of an anti-FGF-23 Antibody for targeted treatment of X‑linked Hypophosphatemia (XLH). Evolutions regarding the nosology of osteogenesis imperfecta (OI) along with the identification of further causative genes also detected in the context of genetically determined osteoporosis illustrate the pathophysiologic interrelation between monogenetic bone dysplasias and multifactorial osteoporosis. While current therapeutic strategies for OI follow osteoporosis treatment, the expanding knowledge about OI forms the fundament for establishing improved treatment strategies-for both OI and osteoporosis. Similar developments are emerging regarding rare skeletal disorders like Achondroplasia, Fibrodysplasia ossificans progressive and Morbus Morquio (Mukopolysaccharidosis Type IV).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00108-021-00995-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!