A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota. | LitMetric

Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota.

Gut Microbes

Department of Microbiology & Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.

Published: January 2022

Changes in bacterial diversity in the human gut have been associated with many conditions, despite not always reflecting changes in bacterial activity. Methods linking bacterial identity to function are needed for improved understanding of how bacterial communities adapt and respond to their environment, including the gut. Here, we optimized bioorthogonal non-canonical amino acid tagging (BONCAT) for the gut microbiota and combined it with fluorescently activated cell sorting and sequencing (FACS-Seq) to identify the translationally active members of the community. We then used this novel technique to compare with other bulk community measurements of activity and viability: relative nucleic acid content and membrane damage. The translationally active bacteria represent about half of the gut microbiota, and are not distinct from the whole community. The high nucleic acid content bacteria also represent half of the gut microbiota, but are distinct from the whole community and correlate with the damaged subset. Perturbing the community with xenobiotics previously shown to alter bacterial activity but not diversity resulted in stronger changes in the distinct physiological fractions than in the whole community. BONCAT is a suitable method to probe the translationally active members of the gut microbiota, and combined with FACS-Seq, allows for their identification. The high nucleic acid content bacteria are not necessarily the protein-producing bacteria in the community; thus, further work is needed to understand the relationship between nucleic acid content and bacterial metabolism in the human gut. Considering physiologically distinct subsets of the gut microbiota may be more informative than whole-community profiling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009119PMC
http://dx.doi.org/10.1080/19490976.2021.1903289DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
nucleic acid
20
acid content
20
human gut
12
translationally active
12
gut
9
content bacterial
8
changes bacterial
8
bacterial activity
8
microbiota combined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!