Dye sensitization achieving photoelectrochemical (PEC) signal amplification for ultrasensitive bioanalysis has undergone a major breakthrough. In this proposal, an innovative PEC sensing platform is developed by combining Z-scheme WO@SnS photoactive materials and a G-wire superstructure as well as a dye sensitization enhancement strategy. The newly synthesized WO@SnS heterojunction with outstanding PEC performance is employed as a photoelectrode matrix. Due to the formation of the Z-scheme heterojunction between WO and SnS, the migration dynamics of the photogenerated carrier is evidently augmented. To improve sensitivity, the target excision-driven dual-cycle signal amplification strategy is introduced to output exponential c-myc fragments. Crystal violet is then conjugated into the G-quadruplex to amplify the PEC signal, where crystal violet generates excited electrons by capturing visible light and rapidly injects electrons into the conduction band of SnS, suppressing the recombination of the photo-induced carrier. Moreover, the G-wire superstructure acts as a universal amplification pathway, ensuring adequate crystal violet loads. Specifically, the biosensor for uracil-DNA glycosylase quantification displays a wide detection range (0.0005-1.0 U/mL) and a lower detection limit (0.00025 U/mL). Furthermore, the Z-scheme electron migration mechanism and the crystal violet sensitization effect are discussed in detail. The construction of the PEC sensor provides a new consideration for signal amplification and material design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c01525DOI Listing

Publication Analysis

Top Keywords

crystal violet
16
g-wire superstructure
12
signal amplification
12
z-scheme heterojunction
8
uracil-dna glycosylase
8
dye sensitization
8
pec signal
8
crystal
5
pec
5
crystal violet-sensitized
4

Similar Publications

Novel Co-MOF-doped gelatin/agar intelligent film for beef freshness visual tracking based on the structural change of ZIF-67 under ammonia etching effect.

Int J Biol Macromol

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

It is an important task to construct intelligent packaging for meat freshness monitoring with good color stability and indication function. Herein, cobalt-based metal-organic framework nanomaterials (Co-MOF, ZIF-67) with antimicrobial and ammonia-sensitive properties were successfully synthesized and added into gelatin/agar (GA) matrix to develop highly stable intelligent films (GA/ZIF67). The incorporation of ZIF-67 nanoparticles enhanced the hydrophobicity (water contact angle >90°) and UV-blocking properties (close to 0.

View Article and Find Full Text PDF

A Pyrroloquinazoline Analogue Regulated Streptococcus mutans and Streptococcus sanguinis Dual-Species Biofilms.

Int Dent J

January 2025

School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China. Electronic address:

Objective: Selective inhibition of cariogenic bacteria is regarded as a potential strategy against caries. To assess the potential of SCH-79797, one novel promising antibiotic, in microbial equilibrium using a dual-species biofilms model of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S.

View Article and Find Full Text PDF

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

BRAF inhibitors (BRAFi) represent a cornerstone in melanoma therapy due to their high efficacy. However, the emergence of resistance causes a significant challenge to their clinical utility. This study aims to investigate the potential of diclofenac as a sensitizer for BRAFi therapy in melanoma and to elucidate its underlying mechanism.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!