Aim: At-risk mental state (ARMS) has been recently attracting attention with respect to the improvement of the management and outcome of psychiatric diseases, such as schizophrenia. Since only a few studies have reported on biological alterations in ARMS, serum metabolomics was carried out in ARMS subjects and healthy controls using liquid chromatography with high-resolution mass spectrometry.
Methods: Serum samples were collected from ARMS subjects (n = 24; male: 12; female 12) and age- and sex-matched healthy controls (n = 23 male: 11, female: 12). After serum pre-treatment, liquid chromatography with high-resolution mass spectrometry was performed. Multivariate analyses, such as orthogonal partial least-squares discriminant and volcano plot analyses, were performed.
Results: Serum inosine, lactate, taurine, 2,3-dihydroxypropanoate and glutamate levels differed between the two groups. A significant increase in inosine levels was detected in the positive- and negative-ion modes; however, significant differences were not observed in the levels of other purine-related metabolites (hypoxanthine, xanthine and urate) between the two groups.
Conclusion: Increased inosine levels may serve as biological markers for ARMS, in addition to alterations in the levels of lactate and certain amino acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/eip.13148 | DOI Listing |
Methods Enzymol
January 2025
Department of Chemistry, Washington University in St. Louis, MO, United States. Electronic address:
Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:
Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.
View Article and Find Full Text PDFBlood
January 2025
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.
Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia.
View Article and Find Full Text PDFDig Liver Dis
January 2025
Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden. Electronic address:
Background: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).
Aims: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!