Functional MRI of the Lungs Using Single Breath-Hold and Self-Navigated Ultrashort Echo Time Sequences.

Radiol Cardiothorac Imaging

Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.).

Published: June 2020

Purpose: To evaluate three-dimensional (3D) ultrashort echo time (UTE) MRI regarding image quality and suitability for functional image analysis using gradient-echo sequences in breath-hold and with self-navigation.

Materials And Methods: In this prospective exploratory study, 10 patients (mean age, 21 years; age range, 5-58 years; five men) and 10 healthy control participants (mean age, 25 years; age range, 10-39 years; five men) underwent 3D UTE MRI at 3.0 T. Imaging was performed with a prototypical stack-of-spirals 3D UTE sequence during single breath holds (echo time [TE], 0.05 msec) and with a self-navigated "Koosh ball" 3D UTE sequence at free breathing (TE, 0.03 msec). Image quality was rated on a four-point Likert scale. Edge sharpness was calculated. After semiautomated segmentation, fractional ventilation was calculated from MRI signal intensity (FV) and volume change (FV). The air volume fraction (AVF) was estimated from relative signal intensity (aortic blood signal intensity was used as a reference). Means were compared between techniques and participants. The Wilcoxon signed rank test and Spearman rank correlation were used for statistical analyses.

Results: Image quality ratings were equal for both techniques. However, stack-of-spirals breath-hold UTE was more susceptible to motion and aliasing artifacts. Mean FV was higher during breath hold than at free breathing (mean ± standard deviation in milliliters of gas per milliliters of parenchyma, 0.17 mL/mL ± 0.06 [minimum, 0.07; maximum, 0.34] vs 0.11 mL/mL ± 0.03 [minimum, 0.06; maximum, 0.17], = .016). Mean FV and FV were in good agreement (mean difference: at breath hold, -0.008 [95% confidence interval {CI}: 0.007, -0.024]; ρ = 0.97 vs free breathing, -0.004 [95% CI: 0.007, -0.016]; ρ = 0.91). AVF correlated between both techniques (ρ = 0.94).

Conclusion: Breath-hold and self-navigated 3D UTE sequences yield proton density-weighted images of the lungs that are similar in quality, and both techniques are suitable for functional image analysis.© RSNA, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977963PMC
http://dx.doi.org/10.1148/ryct.2020190162DOI Listing

Publication Analysis

Top Keywords

echo time
12
image quality
12
free breathing
12
signal intensity
12
breath-hold self-navigated
8
ultrashort echo
8
ute mri
8
functional image
8
age years
8
years age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!