Purpose: To compare transthoracic echocardiography (TTE) and cardiac MRI measurements of left ventricular mass (LVM) and maximum wall thickness (MWT) in patients with Fabry disease and evaluate the clinical significance of discrepancies between modalities.
Materials And Methods: Seventy-eight patients with Fabry disease (mean age, 46 years ± 14 [standard deviation]; 63% female) who underwent TTE and cardiac MRI within a 6-month interval between 2008 and 2018 were included in this retrospective cohort study. The clinical significance of measurement discrepancies was evaluated with respect to diagnosis of left ventricular hypertrophy (LVH), eligibility for disease-specific therapy, and prognosis. Statistical analysis included paired-sample test, Cox proportional hazard models, Akaike information criterion (AIC), and intraclass correlation coefficients.
Results: LVM indexed to body surface area (LVMI) and MWT were significantly higher at TTE compared with MRI (105 g/m ± 48 vs 78 g/m ± 36, < .001 and 14 mm ± 4 vs 13 mm ± 5, = .008, respectively). LVH classification was discordant between modalities in 23 patients (29%) ( < .001). Eligibility for disease-specific therapy based on MWT was discordant between modalities in 20 patients (26%) ( < .001). LVMI assessed with MRI was a better predictor of the combined endpoint compared with LVMI assessed with TTE (AIC, 127 vs 131). Interobserver agreement for LVMI and MWT was higher for MRI (intraclass correlation coefficient, 0.951 and 0.912, respectively) compared with TTE (intraclass correlation coefficient, 0.940 and 0.871; respectively).
Conclusion: TTE overestimates LVM and MWT and has lower reproducibility compared with cardiac MRI in Fabry disease. Measurement discrepancies between modalities are clinically significant with respect to diagnosis of LVH, prognosis, and treatment decisions.© RSNA, 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977989 | PMC |
http://dx.doi.org/10.1148/ryct.2020190149 | DOI Listing |
Heart Vessels
December 2024
Department of Biomedical Engineering, Veterans Affairs Medical Center, University of Cincinnati, Rhodes Hall 593, 2851 Woodside Drive, Cincinnati, OH, 45219, USA.
Ejection fraction is commonly used to assess Duchenne muscular dystrophy-associated cardiomyopathy (DMDAC), but it may remain normal (wrongly) despite significant myocardial dysfunction in patients. Therefore, better indicators of myocardial dysfunction are needed for longitudinal (with time) assessment and treatment of DMDAC patients. This study evaluates non-invasive LV PV loop-derived elastance, contractility and efficiency in relation to EF for patients developing DMDAC.
View Article and Find Full Text PDFTomography
November 2024
Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, 09045 Cagliari, Italy.
Objective: The purpose of this study was to explore the impact of pericardial T1 mapping as a potential supportive non-contrast cardiovascular magnetic resonance (CMR) parameter in the diagnosis of acute pericarditis. Additionally, we investigated the relationship between T1 mapping values in acute pericarditis patients and their demographic data, cardiovascular risk factors, clinical parameters, cardiac biomarkers, and cardiac function.
Method: This retrospective study included CMR scans in 35 consecutive patients with acute pericarditis (26 males, 45.
J Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFJ Imaging
December 2024
Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Radiation therapy (RT) is widely used to treat thoracic cancers but carries a risk of radiation-induced heart disease (RIHD). This study aimed to detect early markers of RIHD using machine learning (ML) techniques and cardiac MRI in a rat model. SS.
View Article and Find Full Text PDFCirc Heart Fail
December 2024
Division of Pediatric Cardiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, CA. (K.-J.L., D.H.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!