Purpose: To assess intraobserver, interobserver, and scan-rescan variability of MRI aortic stiffness measurements in a multicenter trial setting.
Materials And Methods: This study was a retrospective analysis of prospectively collected data in a multicenter prospective clinical trial (clinicaltrials.gov ID NCT01870739). Forty-five adult patients (31 men; mean age, 58 years ± 12 [standard deviation]; 15 patients per center; three centers) with arterial hypertension underwent standardized 3-T baseline MRI assessments between June and September 2014. Aortic strain was calculated from maximum and minimum aortic area measurements repeated three times by three readers at three aortic levels on three retrospectively gated axial gradient-echo (GRE) data sets. Pulse wave velocity (PWV) was assessed three times by five readers as Δx/Δt: Δx was measured on a parasagittal GRE image of the aortic arch, and Δt was extracted from ascending and descending aortic velocity curves created on three axial phase-contrast acquisitions. Intraobserver, interobserver, and scan-rescan variability was calculated using percentage coefficient of variation (COV).
Results: Aortic strain variability was lowest at the level of the distal descending aorta (DDA) with median COVs of 1.6% for intraobserver variability, 4.0% for interobserver variability, and 10.3% for scan-rescan variability. It was highest at the ascending aorta (AA) with COVs of 3.6% for intraobserver variability, 10.7% for interobserver variability, and 19.8% for scan-rescan variability. Variability of PWV was low: 0.7% for intraobserver variability, 1.5% for interobserver variability, and 8.1% for scan-rescan variability.
Conclusion: Low variability can be achieved for aortic strain and PWV measurements in a multicenter trial setting using standardized MRI protocols. Although COV was lower when measuring aortic strain at DDA compared with AA, variability was acceptable at both anatomic locations.© RSNA, 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978027 | PMC |
http://dx.doi.org/10.1148/ryct.2020190090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!