Finding a metal contact with higher interface adhesion and lower contact resistivity is a major challenge in realizing 2D material-based field-effect transistors. The commonly used metals in the semiconductor industry have different interface chemistry with phosphorene. Although phosphorene FETs have been fabricated with gold, titanium, and palladium contacts, there are other metals with a better interface. In this work, using DFT, a systematic ab initio study of metal-phosphorene interfaces is carried out for a set of 18 potentially suitable metals with different resistivity, electronegativity, and work-function. The interface between these metals and phosphorene is studied to identify factors responsible for mechanical and electrical behavior of the metal contacts. The work of separation is calculated to measure the adhesion strength of the metal contacts, while the density of states, Schottky barrier height, tunnel barrier height, and the mid-interface charge density calculations are performed to analyze the electrical behavior. Both mechanical and electrical performance of the metal contacts are linked to the interface chemistry. Many important observations which deviate from the general trend are reported and explained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992138PMC
http://dx.doi.org/10.1021/acsomega.0c06255DOI Listing

Publication Analysis

Top Keywords

mechanical electrical
12
metal contacts
12
initio study
8
interface chemistry
8
electrical behavior
8
barrier height
8
interface
6
metals
5
insights mechanical
4
electrical
4

Similar Publications

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.

View Article and Find Full Text PDF

Deployable electronics with enhanced fatigue resistance for crumpling and tension.

Sci Adv

January 2025

Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.

Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.

View Article and Find Full Text PDF

Miniaturized spectral sensing with a tunable optoelectronic interface.

Sci Adv

January 2025

QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.

Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.

View Article and Find Full Text PDF

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!