Functional characterization of the under salt stress.

Plant Divers

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.

Published: February 2021

() plays critical roles in RNA metabolism and plant growth regulation. However, its function in stress-response processes remains largely unknown. Here, we examined the regulatory role of using the mutant and its complementation line under saline conditions. The expression of was repressed by salt treatment at both mRNA and protein levels. After treatment with different NaCl concentrations, the mutants showed increased sensitivity to salinity. This heightened sensitivity was evidenced by decreased germination, reduced root growth, more serious chlorosis, and increased conductivity of the mutants compared with the wild type. Further analysis revealed that regulates the pre-mRNA splicing of several well-characterized marker genes associated with salt stress tolerance. Our data thus imply that may function as a key component in plant response to salt stress by modulating the splicing of salt stress-associated genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987573PMC
http://dx.doi.org/10.1016/j.pld.2020.06.010DOI Listing

Publication Analysis

Top Keywords

salt stress
12
salt
5
functional characterization
4
characterization salt
4
stress plays
4
plays critical
4
critical roles
4
roles rna
4
rna metabolism
4
metabolism plant
4

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!