Coronary artery disease (CAD) is a pandemic disease that is highly preventable as shown by secondary prevention. Primary prevention is preferred knowing that 50% of the population can expect a cardiac event in their lifetime. Risk stratification for primary prevention using the American Heart Association/American College of Cardiology predicted 10-year risk based on conventional risk factors for CAD is less than optimal. Conventional risk factors such as hypertension, cholesterol, and age are age-dependent and not present until the sixth or seventh decade of life. The genetic risk score (GRS), which is estimated from the recently discovered genetic variants predisposed to CAD, offers a potential solution to this dilemma. The GRS, which is derived from genotyping the population with a microarray containing these genetic risk variants, has indicated that genetic risk stratification based on the GRS is superior to that of conventional risk factors in detecting those at high risk and who would benefit most from statin therapy. Studies performed in >1 million individuals confirmed genetic risk stratification is superior and primarily independent of conventional risk factors. Prospective clinical trials based on risk stratification for CAD using the GRS have shown lifestyle changes, physical activity, and statin therapy are associated with 40% to 50% reduction in cardiac events in the high genetic risk group (20%). Genetic risk stratification has the advantage of being innate to an individual's DNA, and because DNA does not change in a lifetime, it is independent of age. Genetic risk stratification is inexpensive and can be performed worldwide, providing risk analysis at any age and thus has the potential to revolutionize primary prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987546 | PMC |
http://dx.doi.org/10.1016/j.jacbts.2020.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!