Tricuspid regurgitation (TR) is a failure in right-sided AV valve function which, if left untreated, leads to marked cardiac shape changes and heart failure. However, the specific right ventricular shape changes resulting from TR are unknown. The goal of this study is to characterize the RV shape changes of patients with severe TR. RVs were segmented from CINE MRI images. Using particle-based shape modeling (PSM), a dense set of homologous landmarks were placed with geometric consistency on the endocardial surface of each RV, via an entropy-based optimization of the information content of the shape model. Principal component analysis (PCA) identified the significant modes of shape variation across the population. These modes were used to create a patient-prediction model. 32 patients and 6 healthy controls were studied. The mean RV shape of TR patients demonstrated increased sphericity relative to controls, with the three most dominant modes of variation showing significant widening of the short axis of the heart, narrowing of the base at the RV outflow tract (RVOT), and blunting of the RV apex. By PCA, shape changes based on the first three modes of variation correctly identified patient vs. control hearts 86.5% of the time. The shape variation may further illuminate the mechanics of TR-induced RV failure and recovery, providing potential targets for therapies including novel devices and surgical interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992117 | PMC |
http://dx.doi.org/10.22489/cinc.2020.346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!