Objective: Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-B signaling pathway is related to podocyte restoration after IT.
Methods: A mouse model of diabetic nephropathy was established using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques.
Results: Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions.
Conclusions: Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969114 | PMC |
http://dx.doi.org/10.1155/2021/9570405 | DOI Listing |
Artif Organs
January 2025
Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.
Intrahepatic islet transplantation is a promising strategy for β-cell replacement therapy in the treatment of Type 1 Diabetes. However, several obstacles hinder the long-term efficacy of this therapy. A major challenge is the scarcity of donor organs.
View Article and Find Full Text PDFJ Am Coll Surg
January 2025
Departments of Surgery, University of Minnesota Medical School Department of Pediatrics, University of Minnesota Medical School Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota.
Background: Total pancreatectomy and intraportal islet cell auto transplantation (TPIAT) is increasingly being offered to patients with refractory chronic pancreatitis. Understanding factors that impact islet function over time is critical.
Study Design: We evaluated factors associated with islet function over 12 years post TPIAT using mixed meal tolerance testing (MMTT).
Pharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
Islet transplantation (IT) is a successful natural cell therapy. But the benefits are known mostly to individuals with severe type 1 diabetes who undergo IT and the health care professionals that work to make the therapy available, reproducible, and safe. Data linking IT to overall survival in T1D might alter this situation and frame the therapy in a more positive light.
View Article and Find Full Text PDFJ Diabetes
January 2025
State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.
Pancreatic islet transplantation is a crucial treatment for managing type 1 diabetes (T1D) in clinical settings. However, the limited availability of human cadaveric islet donors and the need for ongoing administration of immunosuppressive agents post-transplantation hinder the widespread use of this treatment. Stem cell-derived islet organoids have emerged as an effective alternative to primary human islets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!