Cardiovascular diseases (CVD) remain the leading cause of morbimortality in patients with chronic kidney disease (CKD). The aim of this study was to assess the cardiovascular impact of the pharmacological inhibition of soluble epoxide hydrolase (sEH), which metabolizes the endothelium-derived vasodilatory and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acid (DHETs), in the 5/6 nephrectomy (Nx) mouse model. Compared to sham-operated mice, there was decrease in EET-to-DHET ratio 3 months after surgery in vehicle-treated Nx mice but not in mice treated with the sEH inhibitor -AUCB. Nx induced an increase in plasma creatinine and in urine albumin-to-creatinine ratio as well as the development of kidney histological lesions, all of which were not modified by -AUCB. In addition, -AUCB did not oppose Nx-induced blood pressure increase. However, AUCB prevented the development of cardiac hypertrophy and fibrosis induced by Nx, as well as normalized the echocardiographic indices of diastolic and systolic function. Moreover, the reduction in endothelium-dependent flow-mediated dilatation of isolated mesenteric arteries induced by Nx was blunted by -AUCB without change in endothelium-independent dilatation to sodium nitroprusside. Inhibition of sEH reduces the cardiac remodelling, and the diastolic and systolic dysfunctions associated with CKD. These beneficial effects may be mediated by the prevention of endothelial dysfunction, independent from kidney preservation and antihypertensor effect. Thus, inhibition of sEH holds a therapeutic potential in preventing type 4 cardiorenal syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991096 | PMC |
http://dx.doi.org/10.3389/fmolb.2020.604042 | DOI Listing |
Int J Mol Sci
December 2024
Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).
View Article and Find Full Text PDFNat Prod Res
December 2024
Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Fortaleza, Brazil.
A new sesquiterpene, 8,11-epoxy-cadi-3,9-diene (), along with nine known compounds (-), were isolated from the heartwood of . Their structures were elucidated based on NMR spectroscopic data, and by comparison with data previously reported in literature. The hexane extract from the heartwood of , the EtOH extract from the heartwood of , the CHCl-soluble fraction of the EtOH extract, the EtOAc-soluble fraction of the EtOH extract and the compounds - have been evaluated as acetylcholinesterase inhibitors, and among these, the extracts and fractions exhibited satisfactory results.
View Article and Find Full Text PDFPest Manag Sci
December 2024
College of Plant Protection, Northeast Agricultural University, Harbin, China.
Background: Phytophthora sojae (Kaufmann and Gerdemann), a pathogenic oomycete, causes one of the most destructive soybean diseases, Phytophthora root and stem rot (PRR). Previous studies have shown that benzoxazines (BXs) such as 6-methoxy-benzoxazolin-2-one (MBOA) and benzoxazoline-2-one (BOA) in maize root exudates inhibit the chemotaxis of zoospores, as well as the mycelial growth and pathogenicity of P. sojae.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!