The effect of ethanol on phospholipid metabolism in rat pancreas.

Biochem Pharmacol

Department of Gastroenterology, Christchurch School of Medicine, Christchurch Hospital, New Zealand.

Published: May 1988

The phospholipid effect involves agonist-induced breakdown of phosphatidyl inositol (or polyinositides) generating second messengers followed by increased incorporation of 32P during the resynthetic phase of the cycle. Ethanol, an aetiological factor in pancreatitis, has been shown to have various effects on pancreatic secretion. In this study ethanol decreased the incorporation of 32P into phosphatidyl inositol but had no effect on the stimulated breakdown of prelabelled phosphatidyl inositol. However, in addition to recycling of phosphatidyl inositol stimulation of pancreatic tissue results in increased incorporation of precursors into other phospholipids. Cholecystokinin increased the incorporation of both [U-14C] glucose and 32P into phosphatidyl ethanolamine 3-fold but had no effect on 32P incorporation into phosphatidyl choline. As well as increased incorporation of 32P into phosphatidyl inositol (8-fold) cholecystokinin also increased the incorporation of [U-14C] glucose into phosphatidyl inositol (4-5-fold) implying significant de novo synthesis of 1,2 diacyl glycerol in addition to the currently accepted recycling of the 1,2 diacyl glycerol back to phosphatidyl inositol. Ethanol caused an inhibition of 32P incorporation into total phospholipid of rat pancreas during basal and stimulated conditions. When individual phospholipids were separated ethanol was found to decrease the incorporation of 32P into phosphatidyl choline under basal conditions and into all phospholipids during cholecystokinin stimulation. With [U-14C] glucose as the precursor, ethanol inhibited its incorporation into phosphatidyl choline only. Ethanol did not alter the total 32P radioactivity in the aqueous phase of the pancreatic extract nor the percent incorporated into nucleotides. This excluded decreased uptake of 32P and incorporation into nucleotides as a mechanism for the differential inhibition of 32P versus [U-14C] glucose incorporation into phospholipids other than phosphatidyl choline under stimulated conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(88)90534-5DOI Listing

Publication Analysis

Top Keywords

phosphatidyl inositol
28
increased incorporation
20
incorporation 32p
16
32p phosphatidyl
16
[u-14c] glucose
16
phosphatidyl choline
16
phosphatidyl
12
incorporation
12
32p incorporation
12
32p
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!