Photopharmacology is an emerging field that uses light to precisely control drug activity. This strategy promises to improve drug specificity for reducing off-target effects. Proteolysis-targeting chimeras (PROTACs) are an advanced technology engineered to degrade pathogenic proteins through the ubiquitin-proteasome system for disease treatment. This approach has the potential to target the undruggable proteome via event-driven pharmacology. Recently, the combination strategy of photopharmacology and PROTACs has gained tremendous momentum for its use in the discovery and development of new therapies. This review systematically focuses on PROTAC-based photopharmacology. Herein, we provide an overview of the new and vibrant research on photoPROTACs, discuss the advantages and disadvantages of this approach as a biological tool, and outline the challenges it faces in a clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987681PMC
http://dx.doi.org/10.3389/fchem.2021.639176DOI Listing

Publication Analysis

Top Keywords

proteolysis-targeting chimeras
8
photopharmacology
4
photopharmacology proteolysis-targeting
4
chimeras frontier
4
frontier drug
4
drug discovery
4
discovery photopharmacology
4
photopharmacology emerging
4
emerging field
4
field light
4

Similar Publications

Development of PROTACs targeting estrogen receptor: an emerging technique for combating endocrine resistance.

RSC Med Chem

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University Wuhan 430062 China

Despite the success of endocrine therapies in treating ER-positive breast cancer, the development of resistance remains a significant challenge. Estrogen receptor targeting proteolysis-targeting chimeras (ER PROTACs) offer a unique approach by harnessing the ubiquitin-proteasome system to degrade ER, potentially bypassing resistance mechanisms. In this review, we present the drug design, efficacy and early clinical trials of these ER PROTACs.

View Article and Find Full Text PDF

A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment.

Theranostics

January 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.

View Article and Find Full Text PDF

The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.

View Article and Find Full Text PDF

Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.

View Article and Find Full Text PDF

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!