Polar mesospheric clouds (PMCs) occur in the summer near 82 -85km altitude due to seasonal changes of temperature and humidity. However, water vapor and associated PMCs have also been observed associated with rocket exhaust. The effects of this rocket exhaust on the temperature of the upper mesosphere are not well understood. To investigate these effects, 220 kg of pure water was explosively released at 85 km as part of the Super Soaker sounding rocket experiment on the night of January 25-26, 2018 at Poker Flat Research Range (65°N, 147°W). A cloud formed within 18 s and was measured by a ground-based Rayleigh lidar. The peak altitude of the cloud appeared to descend from 92 to 78 km over 3 min. Temperatures leading up to the release were between 197 and 232 K, about 50 K above the summertime water frost point when PMCs typically occur. The apparent motion of the cloud is interpreted in terms of the expansion of the explosive release. Analysis using a water vapor radiative cooling code coupled to a microphysical model indicates that the cloud formed due to the combined effects of rapid radiative cooling (∼25 K) by meter-scale filaments of nearly pure water vapor (∼1 ppv) and an increase in the frost point temperature (from 150 to 200 K) due to the high concentration of water vapor. These results indicate that water exhaust not only acts as a reservoir for mesospheric cloud production but also actively cools the mesosphere to induce cloud formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988588PMC
http://dx.doi.org/10.1029/2019JA027285DOI Listing

Publication Analysis

Top Keywords

water vapor
16
cloud formation
8
water
8
upper mesosphere
8
rocket exhaust
8
pure water
8
cloud formed
8
frost point
8
radiative cooling
8
cloud
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!