Specific epitopes form extensive hydrogen-bonding networks to ensure efficient antibody binding of SARS-CoV-2: Implications for advanced antibody design.

Comput Struct Biotechnol J

Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.

Published: March 2021

Neutralizing antibody targeting to the SARS-CoV-2 could provide powerful therapies. A neutralizing antibody CC12.1 which was found in SARS-CoV-2 patient samples provides potential protection from disease. The aim of molecular dynamics simulations is to identify key epitopes that are crucial to the antibody binding of SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) to promote the development of superior antibodies. Binding modes of the antibody were investigated and compared with RBD bound receptor ACE2. Key epitopes were revealed and a distal motif of RBD (residue numbers 473-488) was demonstrated by analyzing dynamic trajectories. Compared to the receptor ACE2, conformation of RBD could be better stabilized through additional interaction of antibody with the distal motif of RBD, which was further found driven by electrostatic complementarity. By further analysis of the extensive hydrogen-bonding networks, residues D405, K417, Y421, Y453, L455, R457, Y473, A475, N487, G502, Y505 of RBD, which mainly interacted with CDR H3/L3 and two conserved motifs SNY, SGGS, were identified as key epitopes. Higher binding free energy calculated after point mutations on key residues confirms the crucial role for the specific binding. Subsequently, mutations of V V98E and V G68D in CC12.1, which could significantly enhance the binding affinity of the antibody, were also proposed. The results indicate the key epitopes for antibody binding and give explanations for failure of neutralization antibody caused by specific residues mutations on structural basis. Simulations of two point mutations on antibody provide feasible information for advanced antibody design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985686PMC
http://dx.doi.org/10.1016/j.csbj.2021.03.021DOI Listing

Publication Analysis

Top Keywords

key epitopes
16
antibody
12
antibody binding
12
extensive hydrogen-bonding
8
hydrogen-bonding networks
8
binding
8
binding sars-cov-2
8
advanced antibody
8
antibody design
8
neutralizing antibody
8

Similar Publications

Multi-epitope vaccines: a promising strategy against viral diseases in swine.

Front Cell Infect Microbiol

January 2025

School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.

Viral infections in swine, such as African swine fever (ASF), porcine reproductive and respiratory syndrome (PRRS), and foot-and-mouth disease (FMD), have a significant impact on the swine industry. Despite the significant progress in the recent efforts to develop effective vaccines against viral diseases in swine, the search for new protective vaccination strategy remains a challenge. The antigenic epitope, acting as a fundamental unit, can initiate either a cellular or humoral immune response.

View Article and Find Full Text PDF

Development of an immunodiagnostic assay for the detection of .

Turk J Biol

August 2024

Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.

Background/aim: (SCMV; genus and family ), poses a significant threat to global sugarcane cultivars, including those in Pakistan. The aim of this study was to develop a rapid and effective diagnostic tool for detection of SCMV, enabling timely implementation of control measures to mitigate potential yield losses.

Materials And Methods: The study focused on the in silico analysis, physicochemical properties, immunogenicity, and subcellular localization of the SCMV coat protein (CP).

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a bloodborne RNA virus that leads to severe liver diseases, and currently, no effective prophylactic biologics are available to prevent its transmission. The prevention of HCV is closely related to the major histocompatibility complex (MHC). Linear antigenic peptides of HCV, known as T cell epitopes (TCEs), are crucial in the presentation process by MHC molecules to T cells, playing a key role in immune responses.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China.

View Article and Find Full Text PDF

Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus.

ACS Nano

January 2025

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!