High-Level Extracellular Expression of a New β-N-Acetylglucosaminidase in for Producing GlcNAc.

Front Microbiol

State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.

Published: March 2021

N-acetyl-β-D glucosamine (GlcNAc) is wildly used in cosmetics, nutraceuticals and pharmaceuticals. The traditional chemical process for GlcNAc production from chitin causes serious acidic pollution. Therefore, the enzymatic hydrolysis becomes a great promising and alternative strategy to produce GlcNAc. β-N-acetylglucosaminidase (NAGase) can hydrolyze chitin to produce GlcNAc. Here, a GH3 family NAGase encoding gene from was expressed extracellularly in guided by signal peptide PelB. The recombinant BlNagZ presented the best activity at 60°C and pH 5.5 with a high specific activity of 13.05 U/mg. The BlNagZ activity in the fermentation supernatant can reach 13.62 U/mL after optimizing the culture conditions, which is 4.25 times higher than optimization before. Finally, combining BlNagZ with chitinase ChiA we identified before, chitin conversion efficiency to GlcNAc can reach 89.2% within 3.5 h. In all, this study provided not only a high active NAGase, and a secreted expression strategy to reduce the cost of production, which is conducive to the industrial application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996098PMC
http://dx.doi.org/10.3389/fmicb.2021.648373DOI Listing

Publication Analysis

Top Keywords

produce glcnac
8
glcnac
6
high-level extracellular
4
extracellular expression
4
expression β-n-acetylglucosaminidase
4
β-n-acetylglucosaminidase producing
4
producing glcnac
4
glcnac n-acetyl-β-d
4
n-acetyl-β-d glucosamine
4
glucosamine glcnac
4

Similar Publications

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

Altered levels of intracellular protein glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) have emerged as being involved in various cancers and neurodegenerative diseases. OGA inhibitors have proven critically useful as tools to help understand the roles of O-GlcNAc, yet accessing large quantities of inhibitors necessary for many animal studies remains a challenge. Herein is described a scalable method to produce Thiamet-G, a potent, selective, and widely used brain-permeable OGA inhibitor.

View Article and Find Full Text PDF

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.

View Article and Find Full Text PDF

The oral pathogen, Porphyromonas gingivalis has a general O-glycosylation system which it utilises to modify hundreds of proteins localised outside of the cytoplasm. The O-glycan is a heptasaccharide that includes a putative L-fucose and N-acetylgalactosamine (GalNAc) as the 5th and 6th sugar residues respectively. The putative L-fucose is expected to be synthesized as GDP-L-fucose involving the enzymes Gmd (PGN_1078) and Fcl (PGN_1079), while GalNAc is putatively epimerised from GlcNAc by GalE (PGN_1614).

View Article and Find Full Text PDF

ALG13-Related Epilepsy: Current Insights and Future Research Directions.

Neurochem Res

December 2024

Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.

The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!