Catalpol Protects Against High Glucose-Induced Bone Loss by Regulating Osteoblast Function.

Front Pharmacol

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.

Published: March 2021

The overall objective of this study was to investigate the effects of catalpol on bone remodeling of diabetic osteoporosis by regulating osteoblast differentiation and migration. Using a murine model of diabetic osteoporosis, to detect the protective effects of catalpol on bone loss, architectural deterioration of trabecular bone and bone metabolism biomarkers were tested. A model of MC3T3-E1 cells was established by treatment with high glucose; the regulatory role of catalpol in the differentiation and migration was tested by Western blot, ALP staining, and Alizarin Red staining. Catalpol treatment markedly ameliorated trabecular bone deterioration by reducing degenerative changes of the trabecular structure by improving the bone formation marker levels of ALP, osteopontin, type I collagen, and osteocalcin, as well as the level of OPG/RANKL. Catalpol enhanced cell motility and scattering following gap formation of MC3T3-E1 cells. The results indicated that catalpol exhibits a protective effect against diabetic osteoporosis by regulating the differentiation and migration of osteoblast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987667PMC
http://dx.doi.org/10.3389/fphar.2021.626621DOI Listing

Publication Analysis

Top Keywords

diabetic osteoporosis
12
differentiation migration
12
bone loss
8
regulating osteoblast
8
effects catalpol
8
catalpol bone
8
osteoporosis regulating
8
trabecular bone
8
mc3t3-e1 cells
8
catalpol
7

Similar Publications

The objective of this retrospective, database study was to characterize the rate, magnitude and timeline of increases in parathyroid hormone (PTH) levels post-denosumab (DMAb) vs. zoledronic acid (ZA) injection in patients with osteoporosis and near normal baseline PTH. Included were osteoporotic females, ≥50 years, initiating treatment with 60 mg DMAb or 5 mg ZA.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

The Influence of Osteoporosis and Diabetes on Dental Implant Stability: A Pilot Study.

Medicina (Kaunas)

January 2025

Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania.

: Dental implants are a reliable solution for tooth loss; however, systemic conditions like osteoporosis and diabetes, which affect bone quality, healing, and stability, underline the importance of understanding their impact on enhanced outcomes. This study evaluated the comparative effects of osteoporosis and diabetes on dental implant stability over 12 months, utilizing objective implant mobility and stability measures. : This prospective cohort study involved 50 patients, divided into 21 with type 2 diabetes and 29 with osteoporosis, with implant stability assessed at 6 and 12 months using Osstell ISQ and Periotest M devices and statistical analysis identifying differences between groups and time intervals at a significance level of < 0.

View Article and Find Full Text PDF

Context: Trabecular bone score (TBS), a gray-level texture index derived from lumbar spine (LS) dual-energy x-ray absorptiometry (DXA) scans, is decreased in patients with diabetes and is associated with increased fracture risk, independent of areal bone mineral density (aBMD), but potentially influenced by abdominal fat tissue.

Objective: Evaluate effect of romosozumab (210 mg monthly) for 12 months followed by alendronate (70 mg weekly) for 24 months vs alendronate alone (70 mg weekly) for 36 months on LS aBMD and TBS in women with type 2 diabetes (T2D) enrolled in the ARCH study.

Methods: This post hoc analysis included women from ARCH who had T2D at baseline and LS DXA scans at baseline and ≥1 postbaseline visit (romosozumab-to-alendronate, n = 165; alendronate-to-alendronate, n = 195).

View Article and Find Full Text PDF

: This study aimed to capture the early metabolic changes before osteoporosis occurs and identify metabolomic biomarkers at the osteopenia stage for the early prevention of osteoporosis. : Metabolomic data were generated from normal, osteopenia, and osteoporosis groups with 320 participants recruited from the Nicheng community in Shanghai. We conducted individual edge network analysis (iENA) combined with a random forest to detect metabolomic biomarkers for the early warning of osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!