Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS ( = 12), Alzheimer's disease (AD) ( = 10), and healthy non-dementia control (HC) ( = 8) cases. Our findings revealed higher Aβ plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ plaque load. Number of TrkA and p75 positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994928 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.645334 | DOI Listing |
Alzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.
Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.
Alzheimers Dement
December 2024
University of North Dakota, Grand Forks, ND, USA.
Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder affecting nearly 50 million individuals worldwide. Besides aging, various comorbidities can increase the risk of AD, such as asthma. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland.
Background: Cognitive disorders are a growing cause of morbidity and mortality worldwide. Diagnostic approaches to improve early diagnosis of cognitive disorders are constantly being sought. The pathogenesis of cognitive impairment is multifactorial and complex.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Sydney, Sydney, NSW, Australia.
Background: SMOC1 has recently emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). SMOC1 is one of the earliest changing proteins in AD, with SMOC1 cerebrospinal fluid levels increasing 29 years before symptom onset in autosomal dominant AD. Despite this clear association with disease, very little is known about the role of SMOC1 in AD or its function in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!