Orbital hemangiopericytomas (HPCs) are rare mesenchymal tumors with a high tendency to recur. Treatment options are quite limited in case of a relapse, but re-irradiation can be useful. Most of the available data limit the possibility of re-irradiation, while novel techniques (e.g., pencil beam proton therapy [PT]) open new approaches for the safe repeating of treatment. To the best of our knowledge, this is the first well-documented case of multi-times (>3) irradiation of tumors located intracranially. The case reported here describes orbital HPCs with proton irradiation performed two times since 1999 in a 30-year-old woman with a medical history as well as surgery followed by conventional radiotherapy (RT) and chemotherapy, and two times stereotactic RT (in 2009 and 2013). In 2016 the patient came to our hospital with the 3rd relapse of the tumor, located in the left orbit, with an intracranial part, involving cavernous sinus, which was close to the temporal lobe. The 4th course of irradiation was done in May to June 2016 by pencil beam PT. Radiation necrosis occurred after 2 years and was treated with bevacizumab (BVZ). Three years later, another relapse was treated with PT and BVZ. The 9-month follow-up showed complete tumor response without signs of brain toxicity. The patient died due to a brain abscess 1 year after the 5th irradiation. This case shows a possibility of irradiation, applied 5 times to the same location, with promising results and manageable toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983647PMC
http://dx.doi.org/10.1159/000513030DOI Listing

Publication Analysis

Top Keywords

pencil beam
8
irradiation
5
clinical case
4
times
4
case times
4
times irradiated
4
irradiated recurrent
4
recurrent orbital
4
orbital hemangiopericytoma
4
hemangiopericytoma orbital
4

Similar Publications

Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.

Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.

Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.

View Article and Find Full Text PDF

Background And Purpose: Radiation induced image changes (IC) on MRI have been observed after proton therapy for brain tumours. This study aims to create predictive models, with and without taking into account patient variation, based on dose, linear energy transfer (LET) and periventricular zone (PVZ) in a national cohort of patients with glioma treated with pencil beam scanning (PBS).

Materials And Methods: A cohort of 87 consecutive patients with oligodendroglioma or astrocytoma (WHO grade 2-4) treated with PBS from January 2019 to December 2021 was included.

View Article and Find Full Text PDF

Purpose: This study evaluates the hypothesis that a volumetric skin-sparing planning technique (SSPT) will reduce acute dermatitis in patients treated to the breast or chest wall (CW) with proton pencil-beam scanning (PBS).

Methods And Materials: In January 2022, our center incorporated volumetric-based skin-sparing objectives in addition to skin hot spot evaluation as an SSPT. The SSPT incorporated an objective to limit the volume of a skin evaluation structure (skin-eval) receiving 95% of the prescription dose or more (V95%Rx) to ideally < 50%.

View Article and Find Full Text PDF

Purpose/objective(s): While definitive chemoradiation (CRT) with 5-FU/MMC remains the standard of care for localized anal cancer, treatment is associated with significant acute and late toxicity. Proton radiation therapy (RT) may potentially reduce such toxicity. Here, we assess the long-term outcomes of anal cancer patients treated with CRT using proton RT in two prospective pilot studies.

View Article and Find Full Text PDF

Cross-calibration of areal bone mineral densities and body composition between DMS Stratos and Hologic Horizon A dual-energy X-ray absorptiometers: The effect of body mass index.

J Clin Densitom

December 2024

Service de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, France; Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedEx), INSERM, CNRS, Université de Montpellier (UM), France.

Purpose: The aim of this study was to investigate the correlations between areal bone mineral density (aBMD) and body composition measured by two dual-energy X-ray absorptiometers (DXA), the DMS Stratos® (STR) and the Hologic Horizon A® (HRZ), and then generate cross-calibration equations between the two scanners.

Methods: Repeat scans were obtained from 251 adults (85 % female), 36 ± 14 years old with mean body mass index (BMI) of 28.7 ± 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!