The purpose of this work was to evaluate the effect of itaconation on sizing properties (such as viscosity stability, adhesion and film properties) of biological macromolecule (corn starch) for developing a new bio-based sizing agent [itaconylated starch (IS)]. Granular IS samples were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The adhesion of IS to wool fibers was investigated by a standard method (FZ/T 15001-2008). And film properties of IS samples were also studied in terms of tensile strength, breaking elongation, bending endurance and degree of crystallinity, etc. Compared with control acid-converted starch (ACS), stronger bonding forces to wool fibers for IS as well as higher breaking elongation and lower tensile strength for IS film were displayed. Increasing the degrees of substitution (DS) of IS samples from 0 to 0.052 was able to achieve gradually enhanced bonding forces, breaking elongation and bending endurance, which implied that increasing the number of itaconate substituents could play a significantly positive role in overcoming the shortcomings (insufficient adhesion and film brittleness) of starch. These experimental results denoted that the granular IS exhibited potential for the use as a new starch-based size in the sizing of wool warp yarns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.03.143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!