Induced pluripotent stem cells (iPSCs) are attractive for use in early drug discovery because they can differentiate into any cell type. Maintenance cultures and differentiation processes for iPSCs, however, require a high level of technical expertise. To overcome this problem, technological developments such as enhanced automation are necessary to replace manual operation. In addition, a robot system with the flexibility and expandability to carry out maintenance culture and each of the required differentiation processes would also be important. In this study, we established a platform to enable the multiple processes required for iPSC experiments using the Maholo LabDroid, which is a humanoid robotic system with excellent reproducibility and flexibility. The accuracy and robustness of Maholo LabDroid enabled us to cultivate undifferentiated iPSCs for 63 days while maintaining their ability to differentiate into the three embryonic germ layers. Maholo LabDroid maintained and harvested iPSCs in six-well plates, then seeded them into 96-well plates, induced differentiation, and implemented immunocytochemistry. As a result, Maholo LabDroid was confirmed to be able to perform the processes required for myogenic differentiation of iPSCs isolated from a patient with muscular disease and achieved a high differentiation rate with a coefficient of variation (CV) <10% in the first trial. Furthermore, the expandability and flexibility of Maholo LabDroid allowed us to experiment with multiple cell lines simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/24726303211000690 | DOI Listing |
SLAS Technol
December 2023
Kobe City Eye Hospital. 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047 Japan; Robotic Biology Institute Inc. Telecom Center Building East Wing 1F, 2-5-10 Aomi, Koto-ku, Tokyo 135-0064 Japan; Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research. 6-2-3 Furuedai, Suita, Osaka 565-0874 Japan; Vision Care Inc. Kobe Eye Center Building 5F, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan. Electronic address:
The consistent production of high-quality cells in cell therapy highlights the potential of automated manufacturing. Humanoid robots are a useful option for transferring technology to automate human cell cultures. This study evaluated a robotic cell-processing facility (R-CPF) for clinical research on retinal cell therapy, incorporating the versatile humanoid robot Maholo LabDroid and an All-in-One CP unit.
View Article and Find Full Text PDFSci Total Environ
July 2023
Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan. Electronic address:
Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year.
View Article and Find Full Text PDFF1000Res
April 2022
Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, 904-0495, Japan.
SLAS Technol
October 2021
Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan.
Induced pluripotent stem cells (iPSCs) are attractive for use in early drug discovery because they can differentiate into any cell type. Maintenance cultures and differentiation processes for iPSCs, however, require a high level of technical expertise. To overcome this problem, technological developments such as enhanced automation are necessary to replace manual operation.
View Article and Find Full Text PDFSLAS Technol
April 2021
Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.
Cell culturing is a basic experimental technique in cell biology and medical science. However, culturing high-quality cells with a high degree of reproducibility relies heavily on expert skills and tacit knowledge, and it is not straightforward to scale the production process due to the education bottleneck. Although many automated culture systems have been developed and a few have succeeded in mass production environments, very few robots are permissive of frequent protocol changes, which are often required in basic research environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!