We present the VECMA toolkit (VECMAtk), a flexible software environment for single and multiscale simulations that introduces directly applicable and reusable procedures for verification, validation (V&V), sensitivity analysis (SA) and uncertainty quantication (UQ). It enables users to verify key aspects of their applications, systematically compare and validate the simulation outputs against observational or benchmark data, and run simulations conveniently on any platform from the desktop to current multi-petascale computers. In this sequel to our paper on VECMAtk which we presented last year [1] we focus on a range of functional and performance improvements that we have introduced, cover newly introduced components, and applications examples from seven different domains such as conflict modelling and environmental sciences. We also present several implemented patterns for UQ/SA and V&V, and guide the reader through one example concerning COVID-19 modelling in detail. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification '.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059654PMC
http://dx.doi.org/10.1098/rsta.2020.0221DOI Listing

Publication Analysis

Top Keywords

verification validation
12
validation uncertainty
8
uncertainty quantification
8
vecmatk scalable
4
scalable verification
4
quantification toolkit
4
toolkit scientific
4
scientific simulations
4
simulations vecma
4
vecma toolkit
4

Similar Publications

The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.

View Article and Find Full Text PDF

Investigation of Separating Temperature-Induced Structural Strain Using Improved Blind Source Separation (BSS) Technique.

Sensors (Basel)

December 2024

The State Key Laboratory for the Safety, Long-Life, Health Operation and Maintenance of Long-Span Bridges, Jiangsu Provincial Institute of Traffic Science (JSTI Group), Nanjing 210098, China.

The strain data acquired from structural health monitoring (SHM) systems of large-span bridges are often contaminated by a mixture of temperature-induced and vehicle-induced strain components, thereby complicating the assessment of bridge health. Existing approaches for isolating temperature-induced strains predominantly rely on statistical temperature-strain models, which can be significantly influenced by arbitrarily chosen parameters, thereby undermining the accuracy of the results. Additionally, signal processing techniques, including empirical mode decomposition (EMD) and others, frequently yield unstable outcomes when confronted with nonlinear strain signals.

View Article and Find Full Text PDF

The 5G-AKA protocol, a foundational component for 5G network authentication, has been found vulnerable to various security threats, including linkability attacks that compromise user privacy. To address these vulnerabilities, we previously proposed the 5G-AKA-Forward Secrecy (5G-AKA-FS) protocol, which introduces an ephemeral key pair within the home network (HN) to support forward secrecy and prevent linkability attacks. However, a re-evaluation uncovered minor errors in the initial BAN-logic verification and highlighted the need for more rigorous security validation using formal methods.

View Article and Find Full Text PDF

Advanced Trajectory Planning and Control for Autonomous Vehicles with Quintic Polynomials.

Sensors (Basel)

December 2024

School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.

This paper focuses on the design of vehicle trajectories and their control systems. A method based on quintic polynomials is utilized to develop trajectories for intelligent vehicles, ensuring the smooth continuity of the trajectory and related state curves under varying conditions. The construction of lateral and longitudinal controllers is discussed, which includes a tracking error model derived from the two-degree-of-freedom dynamic model of a two-wheeled vehicle and the application of the Frenet coordinate system transformation.

View Article and Find Full Text PDF

Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology.

Nutrients

December 2024

Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China.

Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!