Biomarker potentials of miRNA-associated circRNAs in breast cancer (MCF-7) cells: an in vitro and in silico study.

Mol Biol Rep

Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.

Published: March 2021

Breast cancer is a heterogeneous disease, which is the most common malignancy in women. The incidence and mortality rates of breast cancer indicate that it is the leading cause of cancer-related with deaths. circRNAs operate as part of competing endogenous RNAs (ceRNAs) mechanisms, which play critical roles in the different biological processes of breast cancer such as proliferation, migration, and apoptosis. The goal of the present study is to identify the potential predictive biomarker for breast cancer diagnosis in the circRNA network by in vitro and in silico analyzes. 40 miRNAs were obtained from the miRWalk database and their combinatorial target genes (potential ceRNAs) were identified with ComiR. We stated that the cancer-specific circRNA genes in MCF-7 cells using the cancer-specific circRNA (CSDC) database, and obtained the ones showing potential ceRNA activity in our previous analysis among them. Identified genes with remarkable expression differences between BCa and normal breast tissue were determined by the GEPIA database. Moreover, the Spearman correlation test in the GEPIA database was used for the statistical analysis of the relationship between DCAF7 and SOGA1, SOGA1 and AVL 9, DCAF7 and AVL 9 gene pairs. And also, DCAF7, SOGA1, and AVL9 gene expression levels were detected in MCF-7 and MCF-10A cells by RT-qPCR method. DCAF7, SOGA1, and AVL9 gene were significantly more expressed to BCa tissue and MCF-7 cells than normal breast tissue and MCF-10 A cells. And also, DCAF7 and SOGA1, SOGA1 and AVL9, DCAF7 and AVL9 genes pairs were found to be significantly correlated with BCa. These genes may be considered as potential predictive biomarkers to discriminate BCa patients from healthy persons. Our preliminary results can supply a new perspective for in vitro and vivo studies in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-06281-5DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
dcaf7 soga1
16
mcf-7 cells
12
soga1 avl9
12
vitro silico
8
potential predictive
8
cancer-specific circrna
8
normal breast
8
breast tissue
8
soga1 soga1
8

Similar Publications

A narrative review of sleep and breast cancer: from epidemiology to mechanisms.

Cancer Causes Control

December 2024

Department of Clinical Nutrition, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.

Breast cancer is the leading cause of cancer-related death and the most common cancer among women worldwide. It is crucial to identify potentially modifiable risk factors to intervene and prevent breast cancer effectively. Sleep factors have emerged as a potentially novel risk factor for female breast cancer.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!