An effective and robust colorimetric sensor array for simultaneous detection and discrimination of five reducing sugars (i.e., glyceraldehyde (Gly), fructose (Fru), glucose (Glu), maltose (Mal), and ribose (Rib)) has been proposed. In the sensor array, two negatively charged polydielectrics (sodium polystyrenesulfonate (NaPSS) and sodium polymethacrylate (NaPMAA)), which served as the sensing elements, were individually absorbed on the surface of the cetyltrimethylammonium bromide (CTAB)-coated gold nanorods (AuNR) with positive charges through electrostatic action, forming the designed sensor units (NaPSS-AuNR and NaPMAA-AuNR). In the presence of Tollens reagent (Ag(NH)OH), Ag was absorbed on the surface of negatively charged NaPSS-AuNR and NaPMAA-AuNRs. When confronted with differential reducing sugars, different reducing sugars exhibited differential levels of deoxidizing abilities toward Ag, thus Ag was reduced to diverse amounts of silver nanoparticles (AgNPs) in situ to form core-shell AuNR@AgNP by the traditional Tollens reaction method, leading to distinct colorimetric response patterns (value of A/A (the ratio of absorbance at 360 nm to that at 760 nm in Ag-NaPMAA-AuNR, and the ratio of absorbance at 360 nm to that at 740 nm in Ag-NaPSS-AuNR)). These response patterns are characteristic for each reducing sugar, and can be quantitatively distinguished by linear discriminant analysis (LDA) at concentrations as low as 10 nM with relative standard deviation (RSD) of 4.11% (n = 3). The practicability of this sensor array has been validated by recognition of reducing sugars in serum and urine samples. A colorimetric sensor array for reducing sugar discrimination based on the reduction of Ag and in situ formation of AuNR@AgNP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-04796-zDOI Listing

Publication Analysis

Top Keywords

sensor array
20
reducing sugars
20
colorimetric sensor
12
array reducing
8
silver nanoparticles
8
traditional tollens
8
tollens reaction
8
negatively charged
8
absorbed surface
8
response patterns
8

Similar Publications

Deployable electronics with enhanced fatigue resistance for crumpling and tension.

Sci Adv

January 2025

Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.

Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Metacavities by harnessing the linear-crossing metamaterials.

Nanophotonics

January 2025

MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai 200092, China.

The formed optical cavity mode intensively relies on the size and geometry of optical cavity. When the defect or impurity exists inside the cavity, the formed cavity mode will be destroyed. Here, we propose a metacavity consisting of arrays of linear-crossing metamaterials (LCMMs) with abnormal dispersion, where each LCMM offers both the directional propagation channel for all incident angles and the negative refraction across its neighboring LCMMs.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

A double probe-based fluorescence sensor array to detect rare earth element ions.

Analyst

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.

There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc, Gd, Lu, Y, Ce, Pr, Yb, Dy, Tm, Sm, Ho, Tb, La, and Eu), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!